IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v180y2019icp457-464.html
   My bibliography  Save this article

Converting CO2 from biogas and MgCl2 residues into valuable magnesium carbonate: A novel strategy for renewable energy production

Author

Listed:
  • Baena-Moreno, Francisco M.
  • Rodríguez-Galán, Mónica
  • Vega, Fernando
  • Reina, T.R.
  • Vilches, Luis F.
  • Navarrete, Benito

Abstract

In this work a novel strategy for bio-methane production and magnesium chloride waste valorization is addressed. The proposed process is a potential alternative path to the already existing biogas upgrading technologies by carbon dioxide mineralization into valuable magnesium carbonate. The main parameters affecting the precipitation efficiency (reaction time, reaction temperature, and molar ratio reactant/precipitator) are studied, leading to promising results which spark further investigation in this innovative route. Additionally the purity and the morphology of the obtained solid product was accurately analysed through different physicochemical characterization techniques such as Raman, X-Ray diffraction and Scanning electron microscope. The characterisation study reveals a mixture of Nesqueonite and Dypingite carbonate phases obtained in the process being the later the dominant phase in the resulting precipitate. Overall, the results discussed herein confirmed the technical feasibility of this innovative strategy for synergizing carbon dioxide mineralization and renewable energy production.

Suggested Citation

  • Baena-Moreno, Francisco M. & Rodríguez-Galán, Mónica & Vega, Fernando & Reina, T.R. & Vilches, Luis F. & Navarrete, Benito, 2019. "Converting CO2 from biogas and MgCl2 residues into valuable magnesium carbonate: A novel strategy for renewable energy production," Energy, Elsevier, vol. 180(C), pages 457-464.
  • Handle: RePEc:eee:energy:v:180:y:2019:i:c:p:457-464
    DOI: 10.1016/j.energy.2019.05.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219309831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vogtenhuber, H. & Hofmann, R. & Helminger, F. & Schöny, G., 2018. "Process simulation of an efficient temperature swing adsorption concept for biogas upgrading," Energy, Elsevier, vol. 162(C), pages 200-209.
    2. Tippayawong, N. & Thanompongchart, P., 2010. "Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor," Energy, Elsevier, vol. 35(12), pages 4531-4535.
    3. Zevenhoven, Ron & Slotte, Martin & Åbacka, Jacob & Highfield, James, 2016. "A comparison of CO2 mineral sequestration processes involving a dry or wet carbonation step," Energy, Elsevier, vol. 117(P2), pages 604-611.
    4. Yousef, Ahmed M. & El-Maghlany, Wael M. & Eldrainy, Yehia A. & Attia, Abdelhamid, 2018. "New approach for biogas purification using cryogenic separation and distillation process for CO2 capture," Energy, Elsevier, vol. 156(C), pages 328-351.
    5. Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.
    6. Srinuanpan, Sirasit & Cheirsilp, Benjamas & Prasertsan, Poonsuk, 2018. "Effective biogas upgrading and production of biodiesel feedstocks by strategic cultivation of oleaginous microalgae," Energy, Elsevier, vol. 148(C), pages 766-774.
    7. Wang, Sheng & Bi, Xiaotao & Wang, Shudong, 2015. "Thermodynamic analysis of biomass gasification for biomethane production," Energy, Elsevier, vol. 90(P2), pages 1207-1218.
    8. Rasul, M.G. & Moazzem, S. & Khan, M.M.K., 2014. "Performance assessment of carbonation process integrated with coal fired power plant to reduce CO2 (carbon dioxide) emissions," Energy, Elsevier, vol. 64(C), pages 330-341.
    9. Park, Sangwon, 2018. "CO2 reduction-conversion to precipitates and morphological control through the application of the mineral carbonation mechanism," Energy, Elsevier, vol. 153(C), pages 413-421.
    10. Estelle le Saché & Sarah Johnson & Laura Pastor-Pérez & Bahman Amini Horri & Tomas R. Reina, 2019. "Biogas Upgrading Via Dry Reforming Over a Ni-Sn/CeO 2 -Al 2 O 3 Catalyst: Influence of the Biogas Source," Energies, MDPI, vol. 12(6), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    2. Baena-Moreno, Francisco M. & Malico, Isabel & Rodríguez-Galán, Mónica & Serrano, Antonio & Fermoso, Fernando G. & Navarrete, Benito, 2020. "The importance of governmental incentives for small biomethane plants in South Spain," Energy, Elsevier, vol. 206(C).
    3. Li, Xiangrong & Zhu, Shaoying & Yüksel, Serhat & Dinçer, Hasan & Ubay, Gözde Gülseven, 2020. "Kano-based mapping of innovation strategies for renewable energy alternatives using hybrid interval type-2 fuzzy decision-making approach," Energy, Elsevier, vol. 211(C).
    4. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Bose, A. & O'Shea, R. & Lin, R. & Long, A. & Rajendran, K. & Wall, D. & De, S. & Murphy, J.D., 2022. "Evaluation of a biomethane, food and biofertiliser polygeneration system in a circular economy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    6. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
    2. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    3. Park, Sangwon & Song, Kyungsun & Jo, Hwanju, 2017. "Laboratory-scale experiment on a novel mineralization-based method of CO2 capture using alkaline solution," Energy, Elsevier, vol. 124(C), pages 589-598.
    4. Nam, Hyungseok & Won, Yooseob & Kim, Jae-Young & Yi, Chang-Keun & Park, Young Cheol & Woo, Jae Min & Jung, Su-Yeong & Jin, Gyoung-Tae & Jo, Sung-Ho & Lee, Seung-Yong & Kim, Hyunuk & Park, Jaehyeon, 2020. "Hydrodynamics and heat transfer coefficients during CO2 carbonation reaction in a circulated fluidized bed reactor using 200 kg potassium-based dry sorbent," Energy, Elsevier, vol. 193(C).
    5. Jemni, Mohamed Ali & Kantchev, Gueorgui & Abid, Mohamed Salah, 2011. "Influence of intake manifold design on in-cylinder flow and engine performances in a bus diesel engine converted to LPG gas fuelled, using CFD analyses and experimental investigations," Energy, Elsevier, vol. 36(5), pages 2701-2715.
    6. Huang, Haiping & Zhang, Hong & Han, Denglin, 2021. "Ferrocene addition for suppression of hydrogen sulfide formation during thermal recovery of oil sand bitumen," Energy, Elsevier, vol. 230(C).
    7. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
    8. Pekkoh, Jeeraporn & Ruangrit, Khomsan & Aurepatipan, Nathapat & Duangjana, Kritsana & Sensupa, Sritip & Pumas, Chayakorn & Chaichana, Chatchawan & Pathom-aree, Wasu & Kato, Yasuo & Srinuanpan, Sirasit, 2024. "CO2 to green fuel converter: Photoautotrophic-cultivation of microalgae and its lipids conversion to biodiesel," Renewable Energy, Elsevier, vol. 222(C).
    9. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    10. Han, Siyu & Meng, Yuan & Aihemaiti, Aikelaimu & Gao, Yuchen & Ju, Tongyao & Xiang, Honglin & Jiang, Jianguo, 2022. "Biogas upgrading with various single and blended amines solutions: Capacities and kinetics," Energy, Elsevier, vol. 253(C).
    11. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    12. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Yasar, Abdullah & Ali, Aleena & Tabinda, Amtul Bari & Tahir, Aleena, 2015. "Waste to energy analysis of shakarganj sugar mills; biogas production from the spent wash for electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 126-132.
    14. Klein, Bruno Colling & Chagas, Mateus Ferreira & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Maciel Filho, Rubens, 2019. "Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Matteo Baldelli & Lorenzo Bartolucci & Stefano Cordiner & Giorgio D’Andrea & Emanuele De Maina & Vincenzo Mulone, 2023. "Biomass to H2: Evaluation of the Impact of PV and TES Power Supply on the Performance of an Integrated Bio-Thermo-Chemical Upgrading Process for Wet Residual Biomass," Energies, MDPI, vol. 16(7), pages 1-17, March.
    16. Roberto Paglini & Marta Gandiglio & Andrea Lanzini, 2022. "Technologies for Deep Biogas Purification and Use in Zero-Emission Fuel Cells Systems," Energies, MDPI, vol. 15(10), pages 1-30, May.
    17. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    18. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    19. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    20. Furtado Amaral, Andre & Previtali, Daniele & Bassani, Andrea & Italiano, Cristina & Palella, Alessandra & Pino, Lidia & Vita, Antonio & Bozzano, Giulia & Pirola, Carlo & Manenti, Flavio, 2020. "Biogas beyond CHP: The HPC (heat, power & chemicals) process," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:180:y:2019:i:c:p:457-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.