IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v203y2020ics0360544220309270.html
   My bibliography  Save this article

Biogas beyond CHP: The HPC (heat, power & chemicals) process

Author

Listed:
  • Furtado Amaral, Andre
  • Previtali, Daniele
  • Bassani, Andrea
  • Italiano, Cristina
  • Palella, Alessandra
  • Pino, Lidia
  • Vita, Antonio
  • Bozzano, Giulia
  • Pirola, Carlo
  • Manenti, Flavio

Abstract

The techno-economic feasibility of three biogas utilization processes was assessed through computer simulations on commercial process simulator Aspen HYSYS: HPC (biogas to methanol), BioCH4 (biogas to biomethane) and CHP (biogas to heat & electricity). The last two processes are already used commercially with the aid of subsidy policies. The economic analysis indicates that, without these policies, none of these attain economic self-sustainability due to high overall manufacturing costs. The estimated minimum support cost (MSCs) were 108, 62 and 109 €/MWh for the HPC, BioCH4 and CHP processes, respectively. The model could explain currently practised government subsidies in Italy and Germany. It was seen that the newly proposed HPC process is economically comparable to the traditional CHP process. Therefore, the HPC process is a possible alternative to biogas usage. A support policy was proposed: 50, 66, 158 and 148 €/MWh for available heat, methane, electricity and methanol (respectively); the proposed energy policy results in a 10% OpEx rate of return for any of the processes, thus avoiding a disparity in the production of different products.

Suggested Citation

  • Furtado Amaral, Andre & Previtali, Daniele & Bassani, Andrea & Italiano, Cristina & Palella, Alessandra & Pino, Lidia & Vita, Antonio & Bozzano, Giulia & Pirola, Carlo & Manenti, Flavio, 2020. "Biogas beyond CHP: The HPC (heat, power & chemicals) process," Energy, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309270
    DOI: 10.1016/j.energy.2020.117820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220309270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srinuanpan, Sirasit & Cheirsilp, Benjamas & Prasertsan, Poonsuk, 2018. "Effective biogas upgrading and production of biodiesel feedstocks by strategic cultivation of oleaginous microalgae," Energy, Elsevier, vol. 148(C), pages 766-774.
    2. Leme, Rodrigo Marcelo & Seabra, Joaquim E.A., 2017. "Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry," Energy, Elsevier, vol. 119(C), pages 754-766.
    3. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    4. Tricase, C. & Lombardi, M., 2009. "State of the art and prospects of Italian biogas production from animal sewage: Technical-economic considerations," Renewable Energy, Elsevier, vol. 34(3), pages 477-485.
    5. Rieke, C. & Stollenwerk, D. & Dahmen, M. & Pieper, M., 2018. "Modeling and optimization of a biogas plant for a demand-driven energy supply," Energy, Elsevier, vol. 145(C), pages 657-664.
    6. Samavati, Mahrokh & Santarelli, Massimo & Martin, Andrew & Nemanova, Vera, 2017. "Thermodynamic and economy analysis of solid oxide electrolyser system for syngas production," Energy, Elsevier, vol. 122(C), pages 37-49.
    7. Rotunno, Paolo & Lanzini, Andrea & Leone, Pierluigi, 2017. "Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel," Renewable Energy, Elsevier, vol. 102(PB), pages 417-432.
    8. Fuqiang, Wang & Jianyu, Tan & Huijian, Jin & Yu, Leng, 2015. "Thermochemical performance analysis of solar driven CO2 methane reforming," Energy, Elsevier, vol. 91(C), pages 645-654.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García, R. & Gil, M.V. & Rubiera, F. & Chen, D. & Pevida, C., 2021. "Renewable hydrogen production from biogas by sorption enhanced steam reforming (SESR): A parametric study," Energy, Elsevier, vol. 218(C).
    2. Esfandiyar Naeiji & Alireza Noorpoor & Hossein Ghanavati, 2022. "Energy, Exergy, and Economic Analysis of Cryogenic Distillation and Chemical Scrubbing for Biogas Upgrading and Hydrogen Production," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    3. Deok-Kyeom Jung & Sung-Min Park, 2023. "Economic Value Estimation of Biogas Utilization in Public Wastewater Treatment Plants of the Republic of Korea," Energies, MDPI, vol. 16(5), pages 1-13, February.
    4. Yang Mo Gu & Seon Young Park & Ji Yeon Park & Byoung-In Sang & Byoung Seong Jeon & Hyunook Kim & Jin Hyung Lee, 2021. "Impact of Attrition Ball-Mill on Characteristics and Biochemical Methane Potential of Food Waste," Energies, MDPI, vol. 14(8), pages 1-10, April.
    5. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    6. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    7. Pallavicini, Jacopo & Fedeli, Matteo & Scolieri, Giacomo Domenico & Tagliaferri, Francesca & Parolin, Jacopo & Sironi, Selena & Manenti, Flavio, 2023. "Digital twin-based optimization and demo-scale validation of absorption columns using sodium hydroxide/water mixtures for the purification of biogas streams subject to impurity fluctuations," Renewable Energy, Elsevier, vol. 219(P1).
    8. Kęstutis Venslauskas & Kęstutis Navickas & Marja Nappa & Petteri Kangas & Revilija Mozūraitytė & Rasa Šližytė & Vidmantas Župerka, 2021. "Energetic and Economic Evaluation of Zero-Waste Fish Co-Stream Processing," IJERPH, MDPI, vol. 18(5), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bedoić, Robert & Jurić, Filip & Ćosić, Boris & Pukšec, Tomislav & Čuček, Lidija & Duić, Neven, 2020. "Beyond energy crops and subsidised electricity – A study on sustainable biogas production and utilisation in advanced energy markets," Energy, Elsevier, vol. 201(C).
    2. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    3. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    4. Costantini, Michele & Provolo, Giorgio & Bacenetti, Jacopo, 2024. "The effects of incorporating renewable energy into the environmental footprint of beef production," Energy, Elsevier, vol. 289(C).
    5. Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
    6. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    7. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    8. Pekkoh, Jeeraporn & Ruangrit, Khomsan & Aurepatipan, Nathapat & Duangjana, Kritsana & Sensupa, Sritip & Pumas, Chayakorn & Chaichana, Chatchawan & Pathom-aree, Wasu & Kato, Yasuo & Srinuanpan, Sirasit, 2024. "CO2 to green fuel converter: Photoautotrophic-cultivation of microalgae and its lipids conversion to biodiesel," Renewable Energy, Elsevier, vol. 222(C).
    9. Francis Auguste Fleury Junior Dima & Zifu Li & Heinz-Peter Mang & Lixin Zhu, 2022. "Feasibility Analysis of Biogas Production by Using GIS and Multicriteria Decision Aid Methods in the Central African Republic," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    10. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    11. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    12. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    13. Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Huilu Yu & Youning Yan & Suocheng Dong, 2019. "A System Dynamics Model to Assess the Effectiveness of Governmental Support Policies for Renewable Electricity," Sustainability, MDPI, vol. 11(12), pages 1-27, June.
    15. Baena-Moreno, Francisco M. & Rodríguez-Galán, Mónica & Vega, Fernando & Reina, T.R. & Vilches, Luis F. & Navarrete, Benito, 2019. "Converting CO2 from biogas and MgCl2 residues into valuable magnesium carbonate: A novel strategy for renewable energy production," Energy, Elsevier, vol. 180(C), pages 457-464.
    16. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Klein, Bruno Colling & Chagas, Mateus Ferreira & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Maciel Filho, Rubens, 2019. "Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. Bücker, Francielle & Marder, Munique & Peiter, Marina Regina & Lehn, Daniel Neutzling & Esquerdo, Vanessa Mendonça & Antonio de Almeida Pinto, Luiz & Konrad, Odorico, 2020. "Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system," Renewable Energy, Elsevier, vol. 147(P1), pages 798-805.
    19. Nogueira, Carlos Eduardo Camargo & de Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Azevedo, Ricardo Lessa, 2015. "Exploring possibilities of energy insertion from vinasse biogas in the energy matrix of Paraná State, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 300-305.
    20. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.