IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v170y2022ics1364032122008413.html
   My bibliography  Save this article

Evaluation of a biomethane, food and biofertiliser polygeneration system in a circular economy system

Author

Listed:
  • Bose, A.
  • O'Shea, R.
  • Lin, R.
  • Long, A.
  • Rajendran, K.
  • Wall, D.
  • De, S.
  • Murphy, J.D.

Abstract

Biomethane is a viable alternative to natural gas and diesel for decarbonising hard-to-abate sectors such as agriculture, industry and heavy transport. Unlike conventional biogas upgrading, photosynthetic biogas upgrading cogenerates biomethane, biofertiliser and microalgal bioproducts with the potential to improve resource utilisation and process performance in a circular economy. In this paper, a photosynthetic biogas upgrading-based polygeneration process is proposed and analysed to co-produce biofuel (biomethane), bio-fertiliser (digestate) and food (Spirulina powder, protein supplement) using agricultural feedstock. Based on a multi-criteria performance assessment, the economic and environmental benefits of the process are demonstrated. Thermodynamic performance of the process revealed that reducing the energy for greenhouse heating to cultivate microalgae would enable a higher energy output than input. Using economic allocation, a carbon footprint of biomethane less than 10 gCO2-eq/MJ (lower than 32.9 gCO2-eq/MJ for sustainable biomethane use in transport in the EU Renewable Energy Directive (Recast) (RED-II)); Spirulina protein of 0.8 kgCO2-eq/100 g protein (compared to 50 kgCO2-eq/100 g protein for beef); and digestate of 0.4 kgCO2-eq/kgN (comparing positively to 1.5–3 kgCO2-eq/kgN for synthetic nitrogenous fertiliser) was achieved. Unlike the current RED-II mandated methodology, the analysis established that the energy, CO2 emissions, land and water footprints of each co-product are best represented using an economic allocation principle. Based on the extended nutrition profile, Spirulina as a complete food outperforms most meat and plant-based protein alternatives in terms of CO2 emissions, land, and water footprints.

Suggested Citation

  • Bose, A. & O'Shea, R. & Lin, R. & Long, A. & Rajendran, K. & Wall, D. & De, S. & Murphy, J.D., 2022. "Evaluation of a biomethane, food and biofertiliser polygeneration system in a circular economy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:rensus:v:170:y:2022:i:c:s1364032122008413
    DOI: 10.1016/j.rser.2022.112960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122008413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baena-Moreno, Francisco M. & Rodríguez-Galán, Mónica & Vega, Fernando & Reina, T.R. & Vilches, Luis F. & Navarrete, Benito, 2019. "Converting CO2 from biogas and MgCl2 residues into valuable magnesium carbonate: A novel strategy for renewable energy production," Energy, Elsevier, vol. 180(C), pages 457-464.
    2. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    3. Vo, Truc T.Q. & Rajendran, Karthik & Murphy, Jerry D., 2018. "Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry?," Applied Energy, Elsevier, vol. 228(C), pages 1046-1056.
    4. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    5. Long, Aoife & Murphy, Jerry D., 2019. "Can green gas certificates allow for the accurate quantification of the energy supply and sustainability of biomethane from a range of sources for renewable heat and or transport?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Capponi, Simone & Fazio, Simone & Barbanti, Lorenzo, 2012. "CO2 savings affect the break-even distance of feedstock supply and digestate placement in biogas production," Renewable Energy, Elsevier, vol. 37(1), pages 45-52.
    7. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Martín-Gamboa, Mario & Marques, Pedro & Freire, Fausto & Arroja, Luís & Dias, Ana Cláudia, 2020. "Life cycle assessment of biomass pellets: A review of methodological choices and results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. O'Shea, Richard & Wall, David M. & Kilgallon, Ian & Browne, James D. & Murphy, Jerry D., 2017. "Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region," Applied Energy, Elsevier, vol. 188(C), pages 237-256.
    10. Smyth, Beatrice M. & Murphy, Jerry D. & O'Brien, Catherine M., 2009. "What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2349-2360, December.
    11. Vo, Truc T.Q. & Wall, David M. & Ring, Denis & Rajendran, Karthik & Murphy, Jerry D., 2018. "Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation," Applied Energy, Elsevier, vol. 212(C), pages 1191-1202.
    12. Meier, L. & Barros, P. & Torres, A. & Vilchez, C. & Jeison, D., 2017. "Photosynthetic biogas upgrading using microalgae: Effect of light/dark photoperiod," Renewable Energy, Elsevier, vol. 106(C), pages 17-23.
    13. Rajendran, Karthik & Browne, James D. & Murphy, Jerry D., 2019. "What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse?," Renewable Energy, Elsevier, vol. 133(C), pages 951-963.
    14. Baena-Moreno, Francisco M. & Gonzalez-Castaño, Miriam & Arellano-García, Harvey & Reina, T.R., 2021. "Exploring profitability of bioeconomy paths: Dimethyl ether from biogas as case study," Energy, Elsevier, vol. 225(C).
    15. Rotunno, Paolo & Lanzini, Andrea & Leone, Pierluigi, 2017. "Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel," Renewable Energy, Elsevier, vol. 102(PB), pages 417-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noussan, Michel & Negro, Viviana & Prussi, Matteo & Chiaramonti, David, 2024. "The potential role of biomethane for the decarbonization of transport: An analysis of 2030 scenarios in Italy," Applied Energy, Elsevier, vol. 355(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bose, Archishman & O'Shea, Richard & Lin, Richen & Long, Aoife & Rajendran, Karthik & Wall, David & De, Sudipta & Murphy, Jerry D., 2022. "The marginal abatement cost of co-producing biomethane, food and biofertiliser in a circular economy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Wu, Benteng & Lin, Richen & Bose, Archishman & Huerta, Jorge Diaz & Kang, Xihui & Deng, Chen & Murphy, Jerry D., 2023. "Economic and environmental viability of biofuel production from organic wastes: A pathway towards competitive carbon neutrality," Energy, Elsevier, vol. 285(C).
    3. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    4. Long, A. & Bose, A. & O'Shea, R. & Monaghan, R. & Murphy, J.D., 2021. "Implications of European Union recast Renewable Energy Directive sustainability criteria for renewable heat and transport: Case study of willow biomethane in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Ó Céileachair, Dónal & O'Shea, Richard & Murphy, Jerry D. & Wall, David M., 2021. "Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane," Applied Energy, Elsevier, vol. 303(C).
    7. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Long, Aoife & Murphy, Jerry D., 2019. "Can green gas certificates allow for the accurate quantification of the energy supply and sustainability of biomethane from a range of sources for renewable heat and or transport?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Idiano D’Adamo & Claudio Sassanelli, 2022. "Biomethane Community: A Research Agenda towards Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    10. Rajendran, Karthik & Browne, James D. & Murphy, Jerry D., 2019. "What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse?," Renewable Energy, Elsevier, vol. 133(C), pages 951-963.
    11. D’Adamo, Idiano & Falcone, Pasquale Marcello & Huisingh, Donald & Morone, Piergiuseppe, 2021. "A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond?," Renewable Energy, Elsevier, vol. 163(C), pages 1660-1672.
    12. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    13. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    14. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Abd, Ammar Ali & Othman, Mohd Roslee & Helwani, Zuchra & Kim, Jinsoo, 2023. "Waste to wheels: Performance comparison between pressure swing adsorption and amine-absorption technologies for upgrading biogas containing hydrogen sulfide to fuel grade standards," Energy, Elsevier, vol. 272(C).
    17. Klein, Bruno Colling & Chagas, Mateus Ferreira & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Maciel Filho, Rubens, 2019. "Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. Vo, Truc T.Q. & Rajendran, Karthik & Murphy, Jerry D., 2018. "Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry?," Applied Energy, Elsevier, vol. 228(C), pages 1046-1056.
    19. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    20. Gustafsson, Marcus & Cordova, Stephanie S. & Svensson, Niclas & Eklund, Mats, 2024. "Climate performance of liquefied biomethane with carbon dioxide utilization or storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:170:y:2022:i:c:s1364032122008413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.