IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp67-80.html
   My bibliography  Save this article

Uncertainty analysis of impact of geometric variations on turbine blade performance

Author

Listed:
  • Wang, Xiaojing
  • Zou, Zhengping

Abstract

It is important to accurately estimate the impact of manufacturing geometric variations on the turbine aerodynamic performance for the engineering design and manufacture. In this paper, a method to quantify the uncertainty impact of the blade geometric variations was proposed. The principal-component analysis combined with the Kolmogorov-Sminov test and the Sobol sensitivity analysis was used for the uncertainty modeling of the blade geometric variations, and the Kriging surrogate model based on the polynomial chaos expansion (PC-Kriging) was used for the uncertainty quantification in the method. Meanwhile, a Reynolds Average Navier-Stokes (RANS) solver was combined to simulate the aerodynamic performance. This method was applied to estimate the impact on the aerodynamic performance of a low-pressure turbine. The calculation results demonstrated that the aerodynamic performance was significantly influenced, which was manifested as an overall deterioration, a large fluctuation and several extreme cases. Detailed analysis of the mechanisms at the origin of the variations in the aerodynamic performance indicated that the variations of total pressure loss mainly come from the variations of the wake mixing loss, and the 70%–100% axial region on the blade is the sensitive region. The geometric variations, especially the variations of the blade thickness, in the sensitive region are one of the main factors leading to the performance variations. In the engineering manufacture, reasonable formulation of the manufacturing tolerance based on the results of the uncertainty analysis can improve the turbine aerodynamic performance under the influence of the geometric variations.

Suggested Citation

  • Wang, Xiaojing & Zou, Zhengping, 2019. "Uncertainty analysis of impact of geometric variations on turbine blade performance," Energy, Elsevier, vol. 176(C), pages 67-80.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:67-80
    DOI: 10.1016/j.energy.2019.03.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219305560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Sung Gun & Park, Sang Jun & Lee, Kyung Seo & Chung, Chinwha, 2012. "Performance prediction of NREL (National Renewable Energy Laboratory) Phase VI blade adopting blunt trailing edge airfoil," Energy, Elsevier, vol. 47(1), pages 47-61.
    2. Zhang, Weihao & Zou, Zhengping & Ye, Jian, 2012. "Leading-edge redesign of a turbomachinery blade and its effect on aerodynamic performance," Applied Energy, Elsevier, vol. 93(C), pages 655-667.
    3. Zhou, Min & Wang, Bo & Li, Tiantian & Watada, Junzo, 2018. "A data-driven approach for multi-objective unit commitment under hybrid uncertainties," Energy, Elsevier, vol. 164(C), pages 722-733.
    4. Bornatico, Raffaele & Hüssy, Jonathan & Witzig, Andreas & Guzzella, Lino, 2013. "Surrogate modeling for the fast optimization of energy systems," Energy, Elsevier, vol. 57(C), pages 653-662.
    5. Liu, ZhiYi & Wang, XiaoDong & Kang, Shun, 2014. "Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations," Energy, Elsevier, vol. 73(C), pages 126-136.
    6. Razaaly, Nassim & Persico, Giacomo & Congedo, Pietro Marco, 2019. "Impact of geometric, operational, and model uncertainties on the non-ideal flow through a supersonic ORC turbine cascade," Energy, Elsevier, vol. 169(C), pages 213-227.
    7. Hamakhan, I.A. & Korakianitis, T., 2010. "Aerodynamic performance effects of leading-edge geometry in gas-turbine blades," Applied Energy, Elsevier, vol. 87(5), pages 1591-1601, May.
    8. Fu, Xueqian & Zhang, Xiurong, 2018. "Failure probability estimation of gas supply using the central moment method in an integrated energy system," Applied Energy, Elsevier, vol. 219(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Ming & Zhang, Kaiyuan & Li, Zhigang & Li, Jun, 2024. "Effect of multi-cavity on the aerothermal performance robustness of the squealer tip under geometric and operational uncertainties," Energy, Elsevier, vol. 287(C).
    2. Wang, Yuqi & Du, Qiuwan & Li, Yunzhu & Zhang, Di & Xie, Yonghui, 2022. "Field reconstruction and off-design performance prediction of turbomachinery in energy systems based on deep learning techniques," Energy, Elsevier, vol. 238(PB).
    3. Kumar, Dinesh & Bahauddin Alam, Syed & Ridwan, Tuhfatur & Goodwin, Cameron S., 2021. "Quantitative risk assessment of a high power density small modular reactor (SMR) core using uncertainty and sensitivity analyses," Energy, Elsevier, vol. 227(C).
    4. Kumar, Manoj & Behera, Suraj K. & Kumar, Amitesh & Sahoo, Ranjit K., 2019. "Numerical and experimental investigation to visualize the fluid flow and thermal characteristics of a cryogenic turboexpander," Energy, Elsevier, vol. 189(C).
    5. McKeand, Austin M. & Gorguluarslan, Recep M. & Choi, Seung-Kyum, 2021. "Stochastic analysis and validation under aleatory and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    6. Moriguchi, Shota & Miyazawa, Hironori & Furusawa, Takashi & Yamamoto, Satoru, 2021. "Large eddy simulation of a linear turbine cascade with a trailing edge cutback," Energy, Elsevier, vol. 220(C).
    7. Ma, Weichao & Zhao, Zhigao & Yang, Jiebin & Lai, Xu & Liu, Chengpeng & Yang, Jiandong, 2024. "A transient analysis framework for hydropower generating systems under parameter uncertainty by integrating physics-based and data-driven models," Energy, Elsevier, vol. 297(C).
    8. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2022. "Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation," Energy, Elsevier, vol. 242(C).
    9. Cao, Bo & Cui, Weijie & Chen, Chao & Chen, Yixue, 2020. "Development and uncertainty analysis of radionuclide atmospheric dispersion modeling codes based on Gaussian plume model," Energy, Elsevier, vol. 194(C).
    10. Wang, Qi & Yang, Li & Rao, Yu, 2021. "Establishment of a generalizable model on a small-scale dataset to predict the surface pressure distribution of gas turbine blades," Energy, Elsevier, vol. 214(C).
    11. Li, Lele & Zhang, Weihao & Li, Ya & Zhang, Ruifeng & Liu, Zongwang & Wang, Yufan & Mu, Yumo, 2024. "A non-parametric high-resolution prediction method for turbine blade profile loss based on deep learning," Energy, Elsevier, vol. 288(C).
    12. Li, Jinxing & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Integrated graph deep learning framework for flow field reconstruction and performance prediction of turbomachinery," Energy, Elsevier, vol. 254(PC).
    13. Mahdi Erfanian Nakhchi & Shine Win Naung & Mohammad Rahmati, 2023. "Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes," Energies, MDPI, vol. 16(6), pages 1-21, March.
    14. Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).
    2. Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
    3. Kun, Wang & Fu, Chen & Jianyang, Yu & Yanping, Song, 2020. "Nested sparse-grid Stochastic Collocation Method for uncertainty quantification of blade stagger angle," Energy, Elsevier, vol. 201(C).
    4. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    6. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    7. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    8. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    9. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.
    10. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    11. Dong, Jizhe & Han, Shunjie & Shao, Xiangxin & Tang, Like & Chen, Renhui & Wu, Longfei & Zheng, Cunlong & Li, Zonghao & Li, Haolin, 2021. "Day-ahead wind-thermal unit commitment considering historical virtual wind power data," Energy, Elsevier, vol. 235(C).
    12. Xinkai Li & Ke Yang & Hao Hu & Xiaodong Wang & Shun Kang, 2019. "Effect of Tailing-Edge Thickness on Aerodynamic Noise for Wind Turbine Airfoil," Energies, MDPI, vol. 12(2), pages 1-25, January.
    13. Ahmed Al Amoodi & Elie Azar, 2018. "Impact of Human Actions on Building Energy Performance: A Case Study in the United Arab Emirates (UAE)," Sustainability, MDPI, vol. 10(5), pages 1-19, May.
    14. Zhang, Weihao & Zou, Zhengping & Ye, Jian, 2012. "Leading-edge redesign of a turbomachinery blade and its effect on aerodynamic performance," Applied Energy, Elsevier, vol. 93(C), pages 655-667.
    15. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.
    16. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).
    17. Wang, Bo & Zhou, Min & Xin, Bo & Zhao, Xin & Watada, Junzo, 2019. "Analysis of operation cost and wind curtailment using multi-objective unit commitment with battery energy storage," Energy, Elsevier, vol. 178(C), pages 101-114.
    18. Jianhua Xu & Zhonghua Han & Xiaochao Yan & Wenping Song, 2019. "Design Optimization of a Multi-Megawatt Wind Turbine Blade with the NPU-MWA Airfoil Family," Energies, MDPI, vol. 12(17), pages 1-24, August.
    19. Cheng Yan & Jianfeng Zhu & Xiuli Shen & Jun Fan & Dong Mi & Zhengming Qian, 2020. "Ensemble of Regression-Type and Interpolation-Type Metamodels," Energies, MDPI, vol. 13(3), pages 1-20, February.
    20. Chi, Lixun & Qadrdan, Meysam & Chaudry, Modassar & Su, Huai & Zhang, Jinjun, 2024. "Reliability of net-zero energy systems for South Wales," Applied Energy, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:67-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.