IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v164y2018icp722-733.html
   My bibliography  Save this article

A data-driven approach for multi-objective unit commitment under hybrid uncertainties

Author

Listed:
  • Zhou, Min
  • Wang, Bo
  • Li, Tiantian
  • Watada, Junzo

Abstract

Recent years, renewable energy has taken growing penetration in power systems due to the energy shortage and environmental concerns. As a result, system operators encounter increasing difficulties in solving unit commitment optimization. In this paper, a data-driven unit commitment model is proposed to handle the hybrid uncertainties of wind power and future load. First, a non-parameter kernel density method is utilized to represent the above hybrid uncertainties, and a novel bandwidth selection strategy for the above method is then proposed to capture the inherent correlation between uncertainty representation and unit commitment. Second, a Monte Carlo simulation is developed to integrate the hybrid uncertainties into Value-at-Risk to get a comprehensive system reliability measurement. Third, considering that system operators might be interested in the inherent conflict between reliability and economy, minimizing operation costs and maximizing system reliability are taken as two objectives in the model. To get more practical schedules, the transmission line constraint is considered as well when building the mathematical model. Additionally, by integrating the reinforcement learning mechanism, a novel multi-objective particle swarm optimization algorithm is proposed to solve the complicated nonlinear model. Finally, several experiments were performed to demonstrate the effectiveness of this research.

Suggested Citation

  • Zhou, Min & Wang, Bo & Li, Tiantian & Watada, Junzo, 2018. "A data-driven approach for multi-objective unit commitment under hybrid uncertainties," Energy, Elsevier, vol. 164(C), pages 722-733.
  • Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:722-733
    DOI: 10.1016/j.energy.2018.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aghaei, Jamshid & Nikoobakht, Ahmad & Siano, Pierluigi & Nayeripour, Majid & Heidari, Alireza & Mardaneh, Mohammad, 2016. "Exploring the reliability effects on the short term AC security-constrained unit commitment: A stochastic evaluation," Energy, Elsevier, vol. 114(C), pages 1016-1032.
    2. Wang, Bo & Wang, Shuming & Zhou, Xianzhong & Watada, Junzo, 2016. "Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties," Energy, Elsevier, vol. 111(C), pages 18-31.
    3. Schulze, Tim & McKinnon, Ken, 2016. "The value of stochastic programming in day-ahead and intra-day generation unit commitment," Energy, Elsevier, vol. 101(C), pages 592-605.
    4. Fattahi, Salar & Ashraphijuo, Morteza & Lavaei, Javad & Atamtürk, Alper, 2017. "Conic relaxations of the unit commitment problem," Energy, Elsevier, vol. 134(C), pages 1079-1095.
    5. Quan, Hao & Srinivasan, Dipti & Khosravi, Abbas, 2016. "Integration of renewable generation uncertainties into stochastic unit commitment considering reserve and risk: A comparative study," Energy, Elsevier, vol. 103(C), pages 735-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).
    2. Wang, Bo & Zhou, Min & Xin, Bo & Zhao, Xin & Watada, Junzo, 2019. "Analysis of operation cost and wind curtailment using multi-objective unit commitment with battery energy storage," Energy, Elsevier, vol. 178(C), pages 101-114.
    3. Dong, Jizhe & Han, Shunjie & Shao, Xiangxin & Tang, Like & Chen, Renhui & Wu, Longfei & Zheng, Cunlong & Li, Zonghao & Li, Haolin, 2021. "Day-ahead wind-thermal unit commitment considering historical virtual wind power data," Energy, Elsevier, vol. 235(C).
    4. Wang, Xiaojing & Zou, Zhengping, 2019. "Uncertainty analysis of impact of geometric variations on turbine blade performance," Energy, Elsevier, vol. 176(C), pages 67-80.
    5. Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Heng & Hu, Xiao & Cheng, Haozhong & Zhang, Shenxi & Hong, Shaoyun & Gu, Qingfa, 2021. "Coordinated scheduling of generators and tie lines in multi-area power systems under wind energy uncertainty," Energy, Elsevier, vol. 222(C).
    2. Wang, Jinwen & Guo, Min & Liu, Yong, 2018. "Hydropower unit commitment with nonlinearity decoupled from mixed integer nonlinear problem," Energy, Elsevier, vol. 150(C), pages 839-846.
    3. Li, Chaoshun & Wang, Wenxiao & Wang, Jinwen & Chen, Deshu, 2019. "Network-constrained unit commitment with RE uncertainty and PHES by using a binary artificial sheep algorithm," Energy, Elsevier, vol. 189(C).
    4. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    5. Xing Chen & Suhua Lou & Yanjie Liang & Yaowu Wu & Xianglu He, 2021. "Optimal Scheduling of a Regional Power System Aiming at Accommodating Clean Energy," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    6. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    7. Wu, Xiaohua & Hu, Xiaosong & Yin, Xiaofeng & Zhang, Caiping & Qian, Shide, 2017. "Optimal battery sizing of smart home via convex programming," Energy, Elsevier, vol. 140(P1), pages 444-453.
    8. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    9. Gerrit Erichsen & Tobias Zimmermann & Alfons Kather, 2019. "Effect of Different Interval Lengths in a Rolling Horizon MILP Unit Commitment with Non-Linear Control Model for a Small Energy System," Energies, MDPI, vol. 12(6), pages 1-24, March.
    10. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    11. Shahbazitabar, Maryam & Abdi, Hamdi, 2018. "A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation," Energy, Elsevier, vol. 161(C), pages 308-324.
    12. Jiao, P.H. & Chen, J.J. & Cai, X. & Zhao, Y.L., 2024. "Fuzzy semi-entropy based downside risk to low-carbon oriented multi-energy dispatch considering multiple dependent uncertainties," Energy, Elsevier, vol. 287(C).
    13. Nikoobakht, Ahmad & Aghaei, Jamshid & Mardaneh, Mohammad, 2017. "Securing highly penetrated wind energy systems using linearized transmission switching mechanism," Applied Energy, Elsevier, vol. 190(C), pages 1207-1220.
    14. Atakan, Semih & Gangammanavar, Harsha & Sen, Suvrajeet, 2022. "Towards a sustainable power grid: Stochastic hierarchical planning for high renewable integration," European Journal of Operational Research, Elsevier, vol. 302(1), pages 381-391.
    15. Jiao, P.H. & Chen, J.J. & Peng, K. & Zhao, Y.L. & Xin, K.F., 2020. "Multi-objective mean-semi-entropy model for optimal standalone micro-grid planning with uncertain renewable energy resources," Energy, Elsevier, vol. 191(C).
    16. Haque, A.N.M.M. & Ibn Saif, A.U.N. & Nguyen, P.H. & Torbaghan, S.S., 2016. "Exploration of dispatch model integrating wind generators and electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1441-1451.
    17. Mansourshoar, Paria & Yazdankhah, Ahmad Sadeghi & Vatanpour, Mohsen & Mohammadi-Ivatloo, Behnam, 2022. "Impact of implementing a price-based demand response program on the system reliability in security-constrained unit commitment problem coupled with wind farms in the presence of contingencies," Energy, Elsevier, vol. 255(C).
    18. Löschenbrand, Markus & Wei, Wei & Liu, Feng, 2018. "Hydro-thermal power market equilibrium with price-making hydropower producers," Energy, Elsevier, vol. 164(C), pages 377-389.
    19. Erica Ocampo & Yen-Chih Huang & Cheng-Chien Kuo, 2020. "Feasible Reserve in Day-Ahead Unit Commitment Using Scenario-Based Optimization," Energies, MDPI, vol. 13(20), pages 1-17, October.
    20. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:164:y:2018:i:c:p:722-733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.