IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223006837.html
   My bibliography  Save this article

Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods

Author

Listed:
  • Li, Jinxing
  • Liu, Tianyuan
  • Zhu, Guangya
  • Li, Yunzhu
  • Xie, Yonghui

Abstract

The actual operation of turbomachinery is inevitably affected by multi-source uncertainties. Such uncertainties are detrimental to the performance and reliability of energy systems. Based on graph learning methods, this work aims to provide a convenient and effective approach for aerodynamic robust optimization of turbomachinery. A radial inflow turbine is taken as the research target and Dual Graph Neural Network (DGNN) regression model is constructed for flow field prediction and performance discrimination. By comparing the accuracy and time consumption, the advantages of DGNN over classical surrogate models and computational fluid dynamics (CFD) are clarified. The proposed model is integrated into uncertainty quantification and aerodynamic robust optimization. The effect of multi-source uncertainties on performance is quantified. The stochastic response of flow fields is also obtained conveniently through DGNN. Robust optimization is performed for power and efficiency, respectively. The power robust optimization improves the power by 1.52% and reduces the standard deviation of power by 15.45%. The efficiency robust optimization achieves an efficiency improvement of 1.76% (increment) and an efficiency standard deviation reduction of 36.82%. The proposed approach is an efficient and competitive choice for uncertainty quantification and robust optimization. The present work contributes to constructing the digital twin of turbomachinery systems.

Suggested Citation

  • Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006837
    DOI: 10.1016/j.energy.2023.127289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223006837
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zuming & Karimi, Iftekhar A., 2020. "Gas turbine performance prediction via machine learning," Energy, Elsevier, vol. 192(C).
    2. Liu, ZhiYi & Wang, XiaoDong & Kang, Shun, 2014. "Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations," Energy, Elsevier, vol. 73(C), pages 126-136.
    3. Li, Yunzhu & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Deep learning based real-time energy extraction system modeling for flapping foil," Energy, Elsevier, vol. 246(C).
    4. Tang, Xinzi & Wang, Zhe & Xiao, Peng & Peng, Ruitao & Liu, Xiongwei, 2020. "Uncertainty quantification based optimization of centrifugal compressor impeller for aerodynamic robustness under stochastic operational conditions," Energy, Elsevier, vol. 195(C).
    5. Fast, M. & Assadi, M. & De, S., 2009. "Development and multi-utility of an ANN model for an industrial gas turbine," Applied Energy, Elsevier, vol. 86(1), pages 9-17, January.
    6. Li, Jinxing & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Integrated graph deep learning framework for flow field reconstruction and performance prediction of turbomachinery," Energy, Elsevier, vol. 254(PC).
    7. Xia, Zhiheng & Luo, Jiaqi & Liu, Feng, 2019. "Statistical evaluation of performance impact of flow variations for a transonic compressor rotor blade," Energy, Elsevier, vol. 189(C).
    8. Razaaly, Nassim & Persico, Giacomo & Congedo, Pietro Marco, 2019. "Impact of geometric, operational, and model uncertainties on the non-ideal flow through a supersonic ORC turbine cascade," Energy, Elsevier, vol. 169(C), pages 213-227.
    9. Huang, Renfang & Zhang, Zhen & Zhang, Wei & Mou, Jiegang & Zhou, Peijian & Wang, Yiwei, 2020. "Energy performance prediction of the centrifugal pumps by using a hybrid neural network," Energy, Elsevier, vol. 213(C).
    10. Rossi, Mosè & Renzi, Massimiliano, 2018. "A general methodology for performance prediction of pumps-as-turbines using Artificial Neural Networks," Renewable Energy, Elsevier, vol. 128(PA), pages 265-274.
    11. Kadhim, Hakim T. & Rona, Aldo, 2018. "Design optimization workflow and performance analysis for contoured endwalls of axial turbines," Energy, Elsevier, vol. 149(C), pages 875-889.
    12. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    13. Sun, Lei & Liu, Tianyuan & Xie, Yonghui & Zhang, Di & Xia, Xinlei, 2021. "Real-time power prediction approach for turbine using deep learning techniques," Energy, Elsevier, vol. 233(C).
    14. Du, Qiuwan & Yang, Like & Li, Liangliang & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Aerodynamic design and optimization of blade end wall profile of turbomachinery based on series convolutional neural network," Energy, Elsevier, vol. 244(PA).
    15. Wang, Xiaojing & Zou, Zhengping, 2019. "Uncertainty analysis of impact of geometric variations on turbine blade performance," Energy, Elsevier, vol. 176(C), pages 67-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Yichen & Xie, Xinyu & Zhao, Pu & Wang, Xiaofang & Ding, Jiaqi & Xie, Rong & Liu, Haitao, 2023. "Forecasting three-dimensional unsteady multi-phase flow fields in the coal-supercritical water fluidized bed reactor via graph neural networks," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Hongzhi & Zhou, Chuangxin & Lu, Xingen & Zhao, Shengfeng & Han, Ge & Yang, Chengwu, 2023. "Robust aerodynamic optimization and design exploration of a wide-chord transonic fan under geometric and operational uncertainties," Energy, Elsevier, vol. 278(PB).
    2. Li, Jinxing & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Integrated graph deep learning framework for flow field reconstruction and performance prediction of turbomachinery," Energy, Elsevier, vol. 254(PC).
    3. Wang, Yuqi & Du, Qiuwan & Li, Yunzhu & Zhang, Di & Xie, Yonghui, 2022. "Field reconstruction and off-design performance prediction of turbomachinery in energy systems based on deep learning techniques," Energy, Elsevier, vol. 238(PB).
    4. Jiang, Chiju & Zhang, Weihao & Li, Ya & Li, Lele & Wang, Yufan & Huang, Dongming, 2023. "Multi-scale Pix2Pix network for high-fidelity prediction of adiabatic cooling effectiveness in turbine cascade," Energy, Elsevier, vol. 265(C).
    5. Du, Qiuwan & Li, Yunzhu & Yang, Like & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Performance prediction and design optimization of turbine blade profile with deep learning method," Energy, Elsevier, vol. 254(PA).
    6. Du, Qiuwan & Yang, Like & Li, Liangliang & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Aerodynamic design and optimization of blade end wall profile of turbomachinery based on series convolutional neural network," Energy, Elsevier, vol. 244(PA).
    7. Wang, Yuqi & Liu, Tianyuan & Meng, Yue & Zhang, Di & Xie, Yonghui, 2022. "Integrated optimization for design and operation of turbomachinery in a solar-based Brayton cycle based on deep learning techniques," Energy, Elsevier, vol. 252(C).
    8. Li, Lele & Zhang, Weihao & Li, Ya & Zhang, Ruifeng & Liu, Zongwang & Wang, Yufan & Mu, Yumo, 2024. "A non-parametric high-resolution prediction method for turbine blade profile loss based on deep learning," Energy, Elsevier, vol. 288(C).
    9. Li, Jinxing & Li, Yunzhu & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2023. "Multi-fidelity graph neural network for flow field data fusion of turbomachinery," Energy, Elsevier, vol. 285(C).
    10. Cheng, Hongzhi & Li, Ziliang & Duan, Penghao & Lu, Xingen & Zhao, Shengfeng & Zhang, Yanfeng, 2023. "Robust optimization and uncertainty quantification of a micro axial compressor for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 352(C).
    11. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    12. Huican Luo & Peijian Zhou & Lingfeng Shu & Jiegang Mou & Haisheng Zheng & Chenglong Jiang & Yantian Wang, 2022. "Energy Performance Curves Prediction of Centrifugal Pumps Based on Constrained PSO-SVR Model," Energies, MDPI, vol. 15(9), pages 1-19, May.
    13. Wang, Xiaojing & Zou, Zhengping, 2019. "Uncertainty analysis of impact of geometric variations on turbine blade performance," Energy, Elsevier, vol. 176(C), pages 67-80.
    14. Zhang, Yiming & Li, Jingxiang & Fei, Liangyu & Feng, Zhiyan & Gao, Jingzhou & Yan, Wenpeng & Zhao, Shengdun, 2023. "Operational performance estimation of vehicle electric coolant pump based on the ISSA-BP neural network," Energy, Elsevier, vol. 268(C).
    15. Wang, Qi & Yang, Li & Huang, Kang, 2022. "Fast prediction and sensitivity analysis of gas turbine cooling performance using supervised learning approaches," Energy, Elsevier, vol. 246(C).
    16. Park, Yeseul & Choi, Minsung & Kim, Kibeom & Li, Xinzhuo & Jung, Chanho & Na, Sangkyung & Choi, Gyungmin, 2020. "Prediction of operating characteristics for industrial gas turbine combustor using an optimized artificial neural network," Energy, Elsevier, vol. 213(C).
    17. Wang, Kun & Chen, Fu & Yu, Jianyang & Song, Yanping & Ghorbaniasl, Ghader, 2023. "Effect of uncertain operating conditions on the aerodynamic performance of high-pressure axial turbomachinery blades," Energy, Elsevier, vol. 283(C).
    18. Wang, Qi & Yang, Li & Rao, Yu, 2021. "Establishment of a generalizable model on a small-scale dataset to predict the surface pressure distribution of gas turbine blades," Energy, Elsevier, vol. 214(C).
    19. Kim, Sangjo & Kim, Kuisoon & Son, Changmin, 2020. "Transient system simulation for an aircraft engine using a data-driven model," Energy, Elsevier, vol. 196(C).
    20. McKeand, Austin M. & Gorguluarslan, Recep M. & Choi, Seung-Kyum, 2021. "Stochastic analysis and validation under aleatory and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.