Field reconstruction and off-design performance prediction of turbomachinery in energy systems based on deep learning techniques
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121825
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tugce Demirdelen & Pırıl Tekin & Inayet Ozge Aksu & Firat Ekinci, 2019. "The Prediction Model of Characteristics for Wind Turbines Based on Meteorological Properties Using Neural Network Swarm Intelligence," Sustainability, MDPI, vol. 11(17), pages 1-18, September.
- Jun-Seong Kim & Do-Yeop Kim, 2020. "Preliminary Design and Off-Design Analysis of a Radial Outflow Turbine for Organic Rankine Cycles," Energies, MDPI, vol. 13(8), pages 1-18, April.
- Storti, Bruno A. & Dorella, Jonathan J. & Roman, Nadia D. & Peralta, Ignacio & Albanesi, Alejandro E., 2019. "Improving the efficiency of a Savonius wind turbine by designing a set of deflector plates with a metamodel-based optimization approach," Energy, Elsevier, vol. 186(C).
- Wang, Qi & Yang, Li & Rao, Yu, 2021. "Establishment of a generalizable model on a small-scale dataset to predict the surface pressure distribution of gas turbine blades," Energy, Elsevier, vol. 214(C).
- Son, Seongmin & Jeong, Yongju & Cho, Seong Kuk & Lee, Jeong Ik, 2020. "Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network," Applied Energy, Elsevier, vol. 263(C).
- Park, Yeseul & Choi, Minsung & Kim, Kibeom & Li, Xinzhuo & Jung, Chanho & Na, Sangkyung & Choi, Gyungmin, 2020. "Prediction of operating characteristics for industrial gas turbine combustor using an optimized artificial neural network," Energy, Elsevier, vol. 213(C).
- Wang, Xiaojing & Zou, Zhengping, 2019. "Uncertainty analysis of impact of geometric variations on turbine blade performance," Energy, Elsevier, vol. 176(C), pages 67-80.
- Liu, Zuming & Karimi, Iftekhar A., 2020. "Gas turbine performance prediction via machine learning," Energy, Elsevier, vol. 192(C).
- Afrasiabi, Mousa & Mohammadi, Mohammad & Rastegar, Mohammad & Kargarian, Amin, 2019. "Multi-agent microgrid energy management based on deep learning forecaster," Energy, Elsevier, vol. 186(C).
- Liu, Changwei & Gao, Tieyu, 2019. "Off-design performance analysis of basic ORC, ORC using zeotropic mixtures and composition-adjustable ORC under optimal control strategy," Energy, Elsevier, vol. 171(C), pages 95-108.
- Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
- Di Zhang & Yuqi Wang & Yonghui Xie, 2018. "Investigation into Off-Design Performance of a S-CO 2 Turbine Based on Concentrated Solar Power," Energies, MDPI, vol. 11(11), pages 1-13, November.
- Huang, Renfang & Zhang, Zhen & Zhang, Wei & Mou, Jiegang & Zhou, Peijian & Wang, Yiwei, 2020. "Energy performance prediction of the centrifugal pumps by using a hybrid neural network," Energy, Elsevier, vol. 213(C).
- Rossi, Mosè & Renzi, Massimiliano, 2018. "A general methodology for performance prediction of pumps-as-turbines using Artificial Neural Networks," Renewable Energy, Elsevier, vol. 128(PA), pages 265-274.
- Sessarego, Matias & Feng, Ju & Ramos-García, Néstor & Horcas, Sergio González, 2020. "Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow," Renewable Energy, Elsevier, vol. 146(C), pages 1524-1535.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Yuqi & Liu, Tianyuan & Meng, Yue & Zhang, Di & Xie, Yonghui, 2022. "Integrated optimization for design and operation of turbomachinery in a solar-based Brayton cycle based on deep learning techniques," Energy, Elsevier, vol. 252(C).
- Li, Jinxing & Li, Yunzhu & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2023. "Multi-fidelity graph neural network for flow field data fusion of turbomachinery," Energy, Elsevier, vol. 285(C).
- Li, Jinxing & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Integrated graph deep learning framework for flow field reconstruction and performance prediction of turbomachinery," Energy, Elsevier, vol. 254(PC).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Yuqi & Liu, Tianyuan & Meng, Yue & Zhang, Di & Xie, Yonghui, 2022. "Integrated optimization for design and operation of turbomachinery in a solar-based Brayton cycle based on deep learning techniques," Energy, Elsevier, vol. 252(C).
- Du, Qiuwan & Yang, Like & Li, Liangliang & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Aerodynamic design and optimization of blade end wall profile of turbomachinery based on series convolutional neural network," Energy, Elsevier, vol. 244(PA).
- Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).
- Jiang, Chiju & Zhang, Weihao & Li, Ya & Li, Lele & Wang, Yufan & Huang, Dongming, 2023. "Multi-scale Pix2Pix network for high-fidelity prediction of adiabatic cooling effectiveness in turbine cascade," Energy, Elsevier, vol. 265(C).
- Du, Qiuwan & Li, Yunzhu & Yang, Like & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Performance prediction and design optimization of turbine blade profile with deep learning method," Energy, Elsevier, vol. 254(PA).
- Li, Jinxing & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Integrated graph deep learning framework for flow field reconstruction and performance prediction of turbomachinery," Energy, Elsevier, vol. 254(PC).
- Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
- Hagen, Brede A.L. & Agromayor, Roberto & Nekså, Petter, 2021. "Equation-oriented methods for design optimization and performance analysis of radial inflow turbines," Energy, Elsevier, vol. 237(C).
- Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
- Huican Luo & Peijian Zhou & Lingfeng Shu & Jiegang Mou & Haisheng Zheng & Chenglong Jiang & Yantian Wang, 2022. "Energy Performance Curves Prediction of Centrifugal Pumps Based on Constrained PSO-SVR Model," Energies, MDPI, vol. 15(9), pages 1-19, May.
- Zhang, Yiming & Li, Jingxiang & Fei, Liangyu & Feng, Zhiyan & Gao, Jingzhou & Yan, Wenpeng & Zhao, Shengdun, 2023. "Operational performance estimation of vehicle electric coolant pump based on the ISSA-BP neural network," Energy, Elsevier, vol. 268(C).
- Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2019. "Experimental and Numerical Characterization of the Sliding Rotary Vane Expander Intake Pressure in Order to Develop a Novel Control-Diagnostic Procedure," Energies, MDPI, vol. 12(10), pages 1-17, May.
- Wang, Qi & Yang, Li & Huang, Kang, 2022. "Fast prediction and sensitivity analysis of gas turbine cooling performance using supervised learning approaches," Energy, Elsevier, vol. 246(C).
- Martí de Castro-Cros & Manel Velasco & Cecilio Angulo, 2021. "Machine-Learning-Based Condition Assessment of Gas Turbines—A Review," Energies, MDPI, vol. 14(24), pages 1-27, December.
- Wang, Qi & Yang, Li & Rao, Yu, 2021. "Establishment of a generalizable model on a small-scale dataset to predict the surface pressure distribution of gas turbine blades," Energy, Elsevier, vol. 214(C).
- Ningjian Peng & Enhua Wang & Hongguang Zhang, 2021. "Preliminary Design of an Axial-Flow Turbine for Small-Scale Supercritical Organic Rankine Cycle," Energies, MDPI, vol. 14(17), pages 1-20, August.
- Li, Lele & Zhang, Weihao & Li, Ya & Zhang, Ruifeng & Liu, Zongwang & Wang, Yufan & Mu, Yumo, 2024. "A non-parametric high-resolution prediction method for turbine blade profile loss based on deep learning," Energy, Elsevier, vol. 288(C).
- Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
- Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
- Wenqiang Zhou & Peijian Zhou & Chun Xiang & Yang Wang & Jiegang Mou & Jiayi Cui, 2023. "A Review of Bionic Structures in Control of Aerodynamic Noise of Centrifugal Fans," Energies, MDPI, vol. 16(11), pages 1-24, May.
More about this item
Keywords
Field reconstruction; Off-design; Aerodynamic performance prediction; Turbomachinery; Neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020739. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.