IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v175y2019icp515-533.html
   My bibliography  Save this article

Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system

Author

Listed:
  • sattari sadat, Seyed mohammad
  • Mirabdolah Lavasani, Arash
  • Ghaebi, Hadi

Abstract

A novel polygeneration system operated by a solid oxide fuel cell is introduced in this article. To show the feasibility of the proposed system, thermodynamic and economic analyses are taken as a merit for the design purpose. After simulation, the outcomes exhibited that the proposed polygeneration system can produce net electricity, cooling load, and H2 rate of 402.2 kW, 96.61 kW, and 15 × 105 kg/h, correspondingly. Regarding this scenario, the energetic efficiency, exergetic efficiency, and overall product cost of the polygeneration system are computed 69.54%, 54.89%, and 155.7 $/GJ, correspondingly. Among all constituents, the solid oxide fuel cell stack attributed as the utmost destructive component by exergy destruction rate of 808.9 kW. Further examination is outlined by inspecting the impact of disparate preeminent thermodynamic parameters on the main outcome criteria and the results are argued in detail. Based on it, it was made a deduction that a higher energetic efficiency is attainable by raising the turbine 2 inlet pressure and evaporation temperature or by reducing the fuel cell current density and mass extraction ratio. Besides, from the 2nd law of thermodynamic vantage point, a higher exergetic efficiency is achieved by raising the fuel cell inlet temperature, mass extraction ratio, and evaporation temperature or by decreasing the fuel cell current density and turbine 2 inlet pressure. From economic standpoint, it is discovered that the overall product cost of the system can be reduced by raising the fuel cell current density and turbine 1 inlet pressure or decreasing the mass extraction ratio, turbine 2 inlet pressure, and evaporation temperature.

Suggested Citation

  • sattari sadat, Seyed mohammad & Mirabdolah Lavasani, Arash & Ghaebi, Hadi, 2019. "Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system," Energy, Elsevier, vol. 175(C), pages 515-533.
  • Handle: RePEc:eee:energy:v:175:y:2019:i:c:p:515-533
    DOI: 10.1016/j.energy.2019.03.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219304979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chitsaz, Ata & Hosseinpour, Javad & Assadi, Mohsen, 2017. "Effect of recycling on the thermodynamic and thermoeconomic performances of SOFC based on trigeneration systems; A comparative study," Energy, Elsevier, vol. 124(C), pages 613-624.
    2. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    3. Parikhani, Towhid & Ghaebi, Hadi & Rostamzadeh, Hadi, 2018. "A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 153(C), pages 265-277.
    4. Kabalina, Natalia & Costa, Mário & Yang, Weihong & Martin, Andrew, 2018. "Impact of a reduction in heating, cooling and electricity loads on the performance of a polygeneration district heating and cooling system based on waste gasification," Energy, Elsevier, vol. 151(C), pages 594-604.
    5. Al-Sulaiman, Fahad A. & Hamdullahpur, Feridun & Dincer, Ibrahim, 2011. "Performance comparison of three trigeneration systems using organic rankine cycles," Energy, Elsevier, vol. 36(9), pages 5741-5754.
    6. Yin, Jiqiang & Yu, Zeting & Zhang, Chenghui & Tian, Minli & Han, Jitian, 2018. "Thermodynamic analysis of a novel combined cooling and power system driven by low-grade heat sources," Energy, Elsevier, vol. 156(C), pages 319-327.
    7. Kabalina, Natalia & Costa, Mário & Yang, Weihong & Martin, Andrew, 2017. "Energy and economic assessment of a polygeneration district heating and cooling system based on gasification of refuse derived fuels," Energy, Elsevier, vol. 137(C), pages 696-705.
    8. Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.
    9. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi, 2018. "A novel trigeneration system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis," Renewable Energy, Elsevier, vol. 119(C), pages 513-527.
    10. Yari, Mortaza & Mehr, Ali Saberi & Mahmoudi, Seyed Mohammad Seyed & Santarelli, Massimo, 2016. "A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester," Energy, Elsevier, vol. 114(C), pages 586-602.
    11. Natalia Kabalina & Mário Costa & Weihong Yang & Andrew Martin, 2016. "Production of Synthetic Natural Gas from Refuse-Derived Fuel Gasification for Use in a Polygeneration District Heating and Cooling System," Energies, MDPI, vol. 9(12), pages 1-14, December.
    12. Zhang, Kun & Chen, Xue & Markides, Christos N. & Yang, Yong & Shen, Shengqiang, 2016. "Evaluation of ejector performance for an organic Rankine cycle combined power and cooling system," Applied Energy, Elsevier, vol. 184(C), pages 404-412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy, Dibyendu & Samanta, Samiran & Ghosh, Sudip, 2020. "Performance assessment of a biomass fuelled advanced hybrid power generation system," Renewable Energy, Elsevier, vol. 162(C), pages 639-661.
    2. Ashraf, Muhammad Adeel & Rashid, Kashif & Rahimipetroudi, Iman & Kim, Hyeon Jin & Dong, Sang Keun, 2020. "Analyzing different planar biogas-fueled SOFC stack designs and their effects on the flow uniformity," Energy, Elsevier, vol. 190(C).
    3. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    4. Chitgar, Nazanin & Moghimi, Mahdi, 2020. "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production," Energy, Elsevier, vol. 197(C).
    5. Sattari Sadat, Seyed Mohammad & Ghaebi, Hadi & Lavasani, Arash Mirabdolah, 2020. "4E analyses of an innovative polygeneration system based on SOFC," Renewable Energy, Elsevier, vol. 156(C), pages 986-1007.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nazila Nematzadeh & Hadi Ghaebi & Ebrahim Abdi Aghdam, 2022. "Thermo-Economic Analysis of Innovative Integrated Power Cycles for Low-Temperature Heat Sources Based on Heat Transformer," Sustainability, MDPI, vol. 14(20), pages 1-27, October.
    2. Mehr, A.S. & Lanzini, A. & Santarelli, M. & Rosen, Marc A., 2021. "Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches," Energy, Elsevier, vol. 228(C).
    3. Ebadollahi, Mohammad & Amidpour, Majid & Pourali, Omid & Ghaebi, Hadi, 2022. "Development of a novel flexible multigeneration energy system for meeting the energy needs of remote areas," Renewable Energy, Elsevier, vol. 198(C), pages 1224-1242.
    4. Hai, Tao & Chaturvedi, Rishabh & Marjan, Riyam K. & Almujibah, Hamad & Van Thuong, Ta & Soliman, Naglaa F. & El-Shafai, Walid, 2024. "Tri-objective optimization of electricity, fresh water, and hydrogen production in a biomass-driven trigeneration plant: Thermoeconomic and environmental evaluation," Energy, Elsevier, vol. 294(C).
    5. Sattari Sadat, Seyed Mohammad & Ghaebi, Hadi & Lavasani, Arash Mirabdolah, 2020. "4E analyses of an innovative polygeneration system based on SOFC," Renewable Energy, Elsevier, vol. 156(C), pages 986-1007.
    6. Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
    7. Mahmoudi, S.M.S. & Akbari Kordlar, M., 2018. "A new flexible geothermal based cogeneration system producing power and refrigeration," Renewable Energy, Elsevier, vol. 123(C), pages 499-512.
    8. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Shayan, E. & Zare, V. & Mirzaee, I., 2019. "On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization," Energy, Elsevier, vol. 171(C), pages 1126-1138.
    10. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).
    11. Bahram Ghorbani, 2021. "Development of an Integrated Structure for the Tri-Generation of Power, Liquid Carbon Dioxide, and Medium Pressure Steam Using a Molten Carbonate Fuel Cell, a Dual Pressure Linde-Hampson Liquefaction ," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    12. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
    13. Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.
    14. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    15. Hosseinpour, Javad & Chitsaz, Ata & Eisavi, Beneta & Yari, Mortaza, 2018. "Investigation on performance of an integrated SOFC-Goswami system using wood gasification," Energy, Elsevier, vol. 148(C), pages 614-628.
    16. Wu, Wencong & Xie, Shutao & Tan, Jiaqi & Ouyang, Tiancheng, 2022. "An integrated design of LNG cold energy recovery for supply demand balance using energy storage devices," Renewable Energy, Elsevier, vol. 183(C), pages 830-848.
    17. Kabalina, Natalia & Costa, Mário & Yang, Weihong & Martin, Andrew, 2018. "Impact of a reduction in heating, cooling and electricity loads on the performance of a polygeneration district heating and cooling system based on waste gasification," Energy, Elsevier, vol. 151(C), pages 594-604.
    18. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2020. "A new high-efficient cooling/power cogeneration system based on a double-flash geothermal power plant and a novel zeotropic bi-evaporator ejector refrigeration cycle," Renewable Energy, Elsevier, vol. 162(C), pages 2126-2152.
    19. Ouyang, Tiancheng & Tan, Jiaqi & Wu, Wencong & Xie, Shutao & Li, Difan, 2022. "Energy, exergy and economic benefits deriving from LNG-fired power plant: Cold energy power generation combined with carbon dioxide capture," Renewable Energy, Elsevier, vol. 195(C), pages 214-229.
    20. Zhang, Feng & Lei, Fang & Liao, Gaoliang & Jiaqiang, E., 2022. "Performance assessment and optimization on a novel geothermal combined cooling and power system integrating an absorption power cycle with an absorption-compression hybrid refrigeration cycle in paral," Renewable Energy, Elsevier, vol. 201(P1), pages 1061-1075.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:175:y:2019:i:c:p:515-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.