IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v190y2020ics0360544219321450.html
   My bibliography  Save this article

Analyzing different planar biogas-fueled SOFC stack designs and their effects on the flow uniformity

Author

Listed:
  • Ashraf, Muhammad Adeel
  • Rashid, Kashif
  • Rahimipetroudi, Iman
  • Kim, Hyeon Jin
  • Dong, Sang Keun

Abstract

In this analysis, a 3D mechanistic model is developed for two different stack designs consist of five planar solid-oxide fuel cells fueled with biogas. Stack flow uniformity index criteria are employed to investigate the flow characteristics. The Detailed transport processes and chemical/electrochemical reactions with overpotential losses are also employed to evaluate the effects of the flow uniformity on the performance of the stacks. The model is validated by comparing the simulated results with the experimental data. Comparison of species, temperature, and current density distribution along with the normalized mass flow rate for two different designs are conducted. The results revealed that the uniformity indexes for the stack design with rectangular strips separators exceed 0.98, whereas for the other design with circular guiding vane separators, are approximately 0.88. Despite the higher flow uniformity of the rectangular separator design, temperature and current density distributions are found to be more uniform with the circular guiding vane separators. An error analysis is also conducted to establish the accuracy of the model. The error analysis demonstrated that the mean relative error (MRE) and root mean square error (RMSE) indexes (%) are 1.7157 and 7.7921 for 120 × 120 mm2, and 1.5147 and 6.89 for 100 × 100 mm2, respectively.

Suggested Citation

  • Ashraf, Muhammad Adeel & Rashid, Kashif & Rahimipetroudi, Iman & Kim, Hyeon Jin & Dong, Sang Keun, 2020. "Analyzing different planar biogas-fueled SOFC stack designs and their effects on the flow uniformity," Energy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219321450
    DOI: 10.1016/j.energy.2019.116450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219321450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moradi, Mehrdad & Mehrpooya, Mehdi, 2017. "Optimal design and economic analysis of a hybrid solid oxide fuel cell and parabolic solar dish collector, combined cooling, heating and power (CCHP) system used for a large commercial tower," Energy, Elsevier, vol. 130(C), pages 530-543.
    2. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    3. Liso, Vincenzo & Olesen, Anders Christian & Nielsen, Mads Pagh & Kær, Søren Knudsen, 2011. "Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system," Energy, Elsevier, vol. 36(7), pages 4216-4226.
    4. Krekel, Daniel & Samsun, Remzi Can & Pasel, Joachim & Prawitz, Matthias & Peters, Ralf & Stolten, Detlef, 2016. "Operating strategies for fuel processing systems with a focus on water–gas shift reactor stability," Applied Energy, Elsevier, vol. 164(C), pages 540-552.
    5. Chang, Ikwhang & Bae, Jiwoong & Park, Joonho & Lee, Sunho & Ban, Myeongseok & Park, Taehyun & Lee, Yoon Ho & Song, Han Ho & Kim, Young-Beom & Cha, Suk Won, 2016. "A thermally self-sustaining solid oxide fuel cell system at ultra-low operating temperature (319 °C)," Energy, Elsevier, vol. 104(C), pages 107-113.
    6. sattari sadat, Seyed mohammad & Mirabdolah Lavasani, Arash & Ghaebi, Hadi, 2019. "Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system," Energy, Elsevier, vol. 175(C), pages 515-533.
    7. Al-Masri, A. & Peksen, M. & Blum, L. & Stolten, D., 2014. "A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions," Applied Energy, Elsevier, vol. 135(C), pages 539-547.
    8. Dong, Sang-Keun & Jung, Woo-Nam & Rashid, Kashif & Kashimoto, Akiyoshi, 2016. "Design and numerical analysis of a planar anode-supported SOFC stack," Renewable Energy, Elsevier, vol. 94(C), pages 637-650.
    9. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi, 2017. "Numerical investigations to determine the optimal operating conditions for 1 kW-class flat-tubular solid oxide fuel cell stack," Energy, Elsevier, vol. 141(C), pages 673-691.
    10. Kang, Sanggyu & Lee, Kanghun & Yu, Sangseok & Lee, Sang Min & Ahn, Kook-Young, 2014. "Development of a coupled reactor with a catalytic combustor and steam reformer for a 5kW solid oxide fuel cell system," Applied Energy, Elsevier, vol. 114(C), pages 114-123.
    11. Wei, S.-S. & Wang, T.-H. & Wu, J.-S., 2014. "Numerical modeling of interconnect flow channel design and thermal stress analysis of a planar anode-supported solid oxide fuel cell stack," Energy, Elsevier, vol. 69(C), pages 553-561.
    12. Jeon, Dong Hyup, 2019. "Computational fluid dynamics simulation of anode-supported solid oxide fuel cells with implementing complete overpotential model," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).
    2. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi & Lee, Dong Won, 2017. "Design and analysis of compact hotbox for solid oxide fuel cell based 1kW-class power generation system," Applied Energy, Elsevier, vol. 208(C), pages 620-636.
    3. Fathy, Ahmed & Rezk, Hegazy, 2022. "Political optimizer based approach for estimating SOFC optimal parameters for static and dynamic models," Energy, Elsevier, vol. 238(PC).
    4. Zaccaria, V. & Tucker, D. & Traverso, A., 2017. "Operating strategies to minimize degradation in fuel cell gas turbine hybrids," Applied Energy, Elsevier, vol. 192(C), pages 437-445.
    5. Xenos, Dionysios P. & Hofmann, Philipp & Panopoulos, Kyriakos D. & Kakaras, Emmanuel, 2015. "Detailed transient thermal simulation of a planar SOFC (solid oxide fuel cell) using gPROMS™," Energy, Elsevier, vol. 81(C), pages 84-102.
    6. Shi, Wangying & Zhu, Jianzhong & Han, Minfang & Sun, Zaihong & Guo, Yaming, 2019. "Operating limitation and degradation modeling of micro solid oxide fuel cell-combined heat and power system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    8. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    9. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    10. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    11. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    12. Liang, Bo & Yao, Yue & Guo, Jin & Yang, Huazheng & Liang, Jiajiang & Zhao, Zhijiang & Wu, Gang & Zhan, Yuedong & Zhao, Xiaobo & Tao, Tao & Yao, Yingbang & Lu, Shengguo & Ruirui, Zhao, 2022. "Propane-fuelled microtubular solid oxide fuel cell stack electrically connected by an anodic rectangular window," Applied Energy, Elsevier, vol. 309(C).
    13. Karol K. Śreniawski & Maciej Chalusiak & Marcin Moździerz & Janusz S. Szmyd & Grzegorz Brus, 2023. "Transport Phenomena in a Banded Solid Oxide Fuel Cell Stack—Part 1: Model and Validation," Energies, MDPI, vol. 16(11), pages 1-25, June.
    14. Jiang, Dongyue & Yang, Wenming & Tang, Aikun, 2016. "A refractory selective solar absorber for high performance thermochemical steam reforming," Applied Energy, Elsevier, vol. 170(C), pages 286-292.
    15. Fardadi, Mahshid & McLarty, Dustin F. & Jabbari, Faryar, 2016. "Investigation of thermal control for different SOFC flow geometries," Applied Energy, Elsevier, vol. 178(C), pages 43-55.
    16. Guk, Erdogan & Venkatesan, Vijay & Babar, Shumaila & Jackson, Lisa & Kim, Jung-Sik, 2019. "Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell," Applied Energy, Elsevier, vol. 241(C), pages 164-173.
    17. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    18. He, Zhongjie & Birgersson, E. & Li, Hua, 2014. "Reduced non-isothermal model for the planar solid oxide fuel cell and stack," Energy, Elsevier, vol. 70(C), pages 478-492.
    19. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    20. Kim, Taebeen & Kang, Sanggyu, 2023. "Numerical analysis of a highly efficient cascade solid oxide fuel cell system with a fuel regenerator," Applied Energy, Elsevier, vol. 341(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219321450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.