IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp986-1007.html
   My bibliography  Save this article

4E analyses of an innovative polygeneration system based on SOFC

Author

Listed:
  • Sattari Sadat, Seyed Mohammad
  • Ghaebi, Hadi
  • Lavasani, Arash Mirabdolah

Abstract

An innovative multigeneration plant driven by a solid oxide fuel cell unit is regarded in this meticulous examination. The plausibility of the expressed plant is substantiated with regarding economic, thermodynamic and environmental concepts as the utmost efficacious equipment for operating evaluation of the thermal systems. An ejector refrigeration system beside a PEM electrolyzer are employed for cooling and hydrogen production. Furthermore, a heat recovery heat exchanger is employed for heating purposes. All subsystems are cautiously investigated and validated considering the reliable reports. The findings portrayed that the introduced multigeneration system can generate cooling load, heating capacity, net output power, and H21 rate of 84.421kW, 2771kW, 184.21kW, and 1.4331kg/h, respectively. In this occasion, the first-law efficiency, exergetic efficiency, product overall cost, and environmental penalty cost are calculated 79.57%, 33.92%, 897.7$/GJ, and 0.3527$/h, respectively. Also, among all constituents, the superior portion of exergy destruction attributed to the solid oxide fuel cell module by 783.31kW, approximately 35.6% of the overall exergy destruction rate. Meantime, a thoroughgoing parametric evaluation of the set-up is established and it is illustrated that the suggested multigeneration plant’s exergetic efficiency can be maximized according to the inlet temperature of the solid oxide fuel cell unit, compression ratio, and solid oxide fuel cell current density. Moreover, the product cost rate of the plant can be minimized with ejector motive fluid pressure, solid oxide fuel cell inlet temperature, and gas turbine outlet pressure.

Suggested Citation

  • Sattari Sadat, Seyed Mohammad & Ghaebi, Hadi & Lavasani, Arash Mirabdolah, 2020. "4E analyses of an innovative polygeneration system based on SOFC," Renewable Energy, Elsevier, vol. 156(C), pages 986-1007.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:986-1007
    DOI: 10.1016/j.renene.2020.04.139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306777
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bang-Møller, C. & Rokni, M. & Elmegaard, B., 2011. "Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system," Energy, Elsevier, vol. 36(8), pages 4740-4752.
    2. Calise, Francesco & Ferruzzi, Gabriele & Vanoli, Laura, 2012. "Transient simulation of polygeneration systems based on PEM fuel cells and solar heating and cooling technologies," Energy, Elsevier, vol. 41(1), pages 18-30.
    3. Toghyani, S. & Afshari, E. & Baniasadi, E. & Atyabi, S.A. & Naterer, G.F., 2018. "Thermal and electrochemical performance assessment of a high temperature PEM electrolyzer," Energy, Elsevier, vol. 152(C), pages 237-246.
    4. Yu, Sangseok & Jung, Dohoy, 2008. "Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area," Renewable Energy, Elsevier, vol. 33(12), pages 2540-2548.
    5. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    6. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    7. Behzadi, Amirmohammad & Gholamian, Ehsan & Houshfar, Ehsan & Habibollahzade, Ali, 2018. "Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit," Energy, Elsevier, vol. 160(C), pages 1055-1068.
    8. Habibollahzade, Ali, 2019. "Employing photovoltaic/thermal panels as a solar chimney roof: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 166(C), pages 118-130.
    9. Parikhani, Towhid & Azariyan, Hossein & Behrad, Reza & Ghaebi, Hadi & Jannatkhah, Javad, 2020. "Thermodynamic and thermoeconomic analysis of a novel ammonia-water mixture combined cooling, heating, and power (CCHP) cycle," Renewable Energy, Elsevier, vol. 145(C), pages 1158-1175.
    10. Parikhani, Towhid & Ghaebi, Hadi & Rostamzadeh, Hadi, 2018. "A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 153(C), pages 265-277.
    11. Espinosa-López, Manuel & Darras, Christophe & Poggi, Philippe & Glises, Raynal & Baucour, Philippe & Rakotondrainibe, André & Besse, Serge & Serre-Combe, Pierre, 2018. "Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer," Renewable Energy, Elsevier, vol. 119(C), pages 160-173.
    12. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    13. Prodromidis, George N. & Coutelieris, Frank A., 2020. "Solid Oxide Fuel Cell systems for electricity generation: An optimization prospect," Renewable Energy, Elsevier, vol. 146(C), pages 38-43.
    14. Ezzat, M.F. & Dincer, I., 2020. "Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems," Energy, Elsevier, vol. 194(C).
    15. Gandiglio, M. & Lanzini, A. & Leone, P. & Santarelli, M. & Borchiellini, R., 2013. "Thermoeconomic analysis of large solid oxide fuel cell plants: Atmospheric vs. pressurized performance," Energy, Elsevier, vol. 55(C), pages 142-155.
    16. sattari sadat, Seyed mohammad & Mirabdolah Lavasani, Arash & Ghaebi, Hadi, 2019. "Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system," Energy, Elsevier, vol. 175(C), pages 515-533.
    17. Zhao, Hongbin & Jiang, Ting & Hou, Hucan, 2015. "Performance analysis of the SOFC–CCHP system based on H2O/Li–Br absorption refrigeration cycle fueled by coke oven gas," Energy, Elsevier, vol. 91(C), pages 983-993.
    18. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    19. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi, 2018. "A novel trigeneration system using geothermal heat source and liquefied natural gas cold energy recovery: Energy, exergy and exergoeconomic analysis," Renewable Energy, Elsevier, vol. 119(C), pages 513-527.
    20. Akrami, Ehsan & Chitsaz, Ata & Nami, Hossein & Mahmoudi, S.M.S., 2017. "Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy," Energy, Elsevier, vol. 124(C), pages 625-639.
    21. Pierobon, Leonardo & Rokni, Masoud & Larsen, Ulrik & Haglind, Fredrik, 2013. "Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle," Renewable Energy, Elsevier, vol. 60(C), pages 226-234.
    22. Behzadi, Amirmohammad & Habibollahzade, Ali & Ahmadi, Pouria & Gholamian, Ehsan & Houshfar, Ehsan, 2019. "Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production," Energy, Elsevier, vol. 169(C), pages 696-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaofeng & Liu, Wenjing & Pan, Jinjun & Zhao, Bin & Yi, Zhengyuan & He, Xu & Liu, Yuting & Li, Hongqiang, 2024. "Comprehensive performance assessment of a novel biomass-based CCHP system integrated with SOFC and HT-PEMFC," Energy, Elsevier, vol. 295(C).
    2. Mahdavi, Navid & Mojaver, Parisa & Khalilarya, Shahram, 2022. "Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method," Renewable Energy, Elsevier, vol. 185(C), pages 506-524.
    3. Farhang, Behzad & Ghaebi, Hadi & Naseri Gollo, Somayeh & Javani, Nader, 2024. "Thermo-economic analysis of an innovative multi-generation system based on ammonia synthesis," Renewable Energy, Elsevier, vol. 227(C).
    4. Hou, Rui & Zhang, Nachuan & Gao, Wei & Chen, Kang & Liu, Yongqiu, 2023. "Thermodynamic, environmental, and exergoeconomic feasibility analyses and optimization of biomass gasifier-solid oxide fuel cell boosting a doable-flash binary geothermal cycle; a novel trigeneration ," Energy, Elsevier, vol. 265(C).
    5. Mousavi, Shadi Bashiri & Ahmadi, Pouria & Adib, Mahdieh & Izadi, Ali, 2023. "Techno-economic assessment of an efficient liquid air energy storage with ejector refrigeration cycle for peak shaving of renewable energies," Renewable Energy, Elsevier, vol. 214(C), pages 96-113.
    6. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    7. Lv, Jiayang & Wang, Yinan & Chen, Heng & Li, Wenchao & Pan, Peiyuan & Wu, Lining & Xu, Gang & Zhai, Rongrong, 2023. "Thermodynamic and economic analysis of a conceptual system combining medical waste plasma gasification, SOFC, sludge gasification, supercritical CO2 cycle, and desalination," Energy, Elsevier, vol. 282(C).
    8. Zhou, Zongming & Cao, Yan & Anqi, Ali E. & Zoghi, Mohammad & Habibi, Hamed & Rajhi, Ali A. & Alamri, Sagr, 2022. "Converting a geothermal-driven steam flash cycle into a high-performance polygeneration system by waste heat recovery: 3E analysis and Genetic-Fgoalattain optimization," Renewable Energy, Elsevier, vol. 186(C), pages 609-627.
    9. Zheng, Jiangbo, 2024. "Integrated renewable-based multi-generation system with environmental and economic optimization," Energy, Elsevier, vol. 294(C).
    10. Ouyang, Tiancheng & Zhang, Mingliang & Qin, Peijia & Liu, Wenjun & Shi, Xiaomin, 2022. "Converting waste into electric energy and carbon fixation through biosyngas-fueled SOFC hybrid system: A simulation study," Renewable Energy, Elsevier, vol. 193(C), pages 725-743.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.
    2. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    3. Behzadi, Amirmohammad & Arabkoohsar, Ahmad & Gholamian, Ehsan, 2020. "Multi-criteria optimization of a biomass-fired proton exchange membrane fuel cell integrated with organic rankine cycle/thermoelectric generator using different gasification agents," Energy, Elsevier, vol. 201(C).
    4. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    5. Nazila Nematzadeh & Hadi Ghaebi & Ebrahim Abdi Aghdam, 2022. "Thermo-Economic Analysis of Innovative Integrated Power Cycles for Low-Temperature Heat Sources Based on Heat Transformer," Sustainability, MDPI, vol. 14(20), pages 1-27, October.
    6. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    7. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
    8. Razmi, Amir Reza & Arabkoohsar, Ahmad & Nami, Hossein, 2020. "Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system," Energy, Elsevier, vol. 210(C).
    9. Abedinia, Oveis & Shakibi, Hamid & Shokri, Afshar & Sobhani, Behnam & Sobhani, Behrouz & Yari, Mortaza & Bagheri, Mehdi, 2024. "Optimization of a syngas-fueled SOFC-based multigeneration system: Enhanced performance with biomass and gasification agent selection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Hai, Tao & Chaturvedi, Rishabh & Marjan, Riyam K. & Almujibah, Hamad & Van Thuong, Ta & Soliman, Naglaa F. & El-Shafai, Walid, 2024. "Tri-objective optimization of electricity, fresh water, and hydrogen production in a biomass-driven trigeneration plant: Thermoeconomic and environmental evaluation," Energy, Elsevier, vol. 294(C).
    11. Al-Rashed, Abdullah A.A.A. & Afrand, Masoud, 2021. "Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion," Energy, Elsevier, vol. 223(C).
    12. sattari sadat, Seyed mohammad & Mirabdolah Lavasani, Arash & Ghaebi, Hadi, 2019. "Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system," Energy, Elsevier, vol. 175(C), pages 515-533.
    13. Behzadi, Amirmohammad & Habibollahzade, Ali & Ahmadi, Pouria & Gholamian, Ehsan & Houshfar, Ehsan, 2019. "Multi-objective design optimization of a solar based system for electricity, cooling, and hydrogen production," Energy, Elsevier, vol. 169(C), pages 696-709.
    14. Naraharisetti, Pavan Kumar & Lakshminarayanan, S. & Karimi, I.A., 2014. "Design of biomass and natural gas based IGFC using multi-objective optimization," Energy, Elsevier, vol. 73(C), pages 635-652.
    15. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    16. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    17. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    18. Moein Shamoushaki & Pouriya H. Niknam & Lorenzo Talluri & Giampaolo Manfrida & Daniele Fiaschi, 2021. "Development of Cost Correlations for the Economic Assessment of Power Plant Equipment," Energies, MDPI, vol. 14(9), pages 1-19, May.
    19. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    20. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:986-1007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.