IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v171y2019icp1126-1138.html
   My bibliography  Save this article

On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization

Author

Listed:
  • Shayan, E.
  • Zare, V.
  • Mirzaee, I.

Abstract

Integration of biomass gasification with solid oxide fuel cell (SOFC) offers an emerging alternative for future sustainable power generation. In the present paper a comparative exergoeconomic analysis of using steam and air as two different gasification agents is performed on an integrated biomass gasification-SOFC system. The system performance is optimized based on the net output power, exergy efficiency and the unit product cost of the system. A detailed thermodynamic equilibrium model for gasification process is developed and verified by reliable available data. A parametric study is conducted to examine the effects of key operating parameters on the net output power, exergy efficiency and unit product cost of the integrated system. The results indicate that, at the optimal operating conditions when steam is used instead of air as the agent, the net output power is increased by 14.8%, the exergy efficiency is increased by 24.9% and the unit product cost of the system is decreased by 8.9%.

Suggested Citation

  • Shayan, E. & Zare, V. & Mirzaee, I., 2019. "On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization," Energy, Elsevier, vol. 171(C), pages 1126-1138.
  • Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:1126-1138
    DOI: 10.1016/j.energy.2019.01.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219301148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chitsaz, Ata & Hosseinpour, Javad & Assadi, Mohsen, 2017. "Effect of recycling on the thermodynamic and thermoeconomic performances of SOFC based on trigeneration systems; A comparative study," Energy, Elsevier, vol. 124(C), pages 613-624.
    2. Jia, Junxi & Li, Qiang & Luo, Ming & Wei, Liming & Abudula, Abuliti, 2011. "Effects of gas recycle on performance of solid oxide fuel cell power systems," Energy, Elsevier, vol. 36(2), pages 1068-1075.
    3. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    4. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2017. "Investigation on performance of an integrated SOFC-GE-KC power generation system using gaseous fuel from biomass gasification," Renewable Energy, Elsevier, vol. 107(C), pages 448-461.
    5. Saebea, Dang & Authayanun, Suthida & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2016. "Effect of anode–cathode exhaust gas recirculation on energy recuperation in a solid oxide fuel cell-gas turbine hybrid power system," Energy, Elsevier, vol. 94(C), pages 218-232.
    6. Sadeghi, M. & Mehr, A.S. & Zar, M. & Santarelli, M., 2018. "Multi-objective optimization of a novel syngas fed SOFC power plant using a downdraft gasifier," Energy, Elsevier, vol. 148(C), pages 16-31.
    7. Santhanam, S. & Schilt, C. & Turker, B. & Woudstra, T. & Aravind, P.V., 2016. "Thermodynamic modeling and evaluation of high efficiency heat pipe integrated biomass Gasifier–Solid Oxide Fuel Cells–Gas Turbine systems," Energy, Elsevier, vol. 109(C), pages 751-764.
    8. Gadsbøll, Rasmus Østergaard & Thomsen, Jesper & Bang-Møller, Christian & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2017. "Solid oxide fuel cells powered by biomass gasification for high efficiency power generation," Energy, Elsevier, vol. 131(C), pages 198-206.
    9. Jia, Junxi & Abudula, Abuliti & Wei, Liming & Sun, Baozhi & Shi, Yue, 2015. "Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system," Renewable Energy, Elsevier, vol. 81(C), pages 400-410.
    10. Sansaniwal, S.K. & Pal, K. & Rosen, M.A. & Tyagi, S.K., 2017. "Recent advances in the development of biomass gasification technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 363-384.
    11. Yari, Mortaza & Mehr, Ali Saberi & Mahmoudi, Seyed Mohammad Seyed & Santarelli, Massimo, 2016. "A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester," Energy, Elsevier, vol. 114(C), pages 586-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amiri, Hamed & Sotoodeh, Amir Farhang & Amidpour, Majid, 2021. "A new combined heating and power system driven by biomass for total-site utility applications," Renewable Energy, Elsevier, vol. 163(C), pages 1138-1152.
    2. Fathy, Ahmed & Rezk, Hegazy & Mohamed Ramadan, Haitham Saad, 2020. "Recent moth-flame optimizer for enhanced solid oxide fuel cell output power via optimal parameters extraction process," Energy, Elsevier, vol. 207(C).
    3. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Pongratz, Gernot & Subotić, Vanja & Hochenauer, Christoph & Scharler, Robert & Anca-Couce, Andrés, 2022. "Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach," Energy, Elsevier, vol. 244(PB).
    5. Torres, Erick & Rodriguez-Ortiz, Leandro A. & Zalazar, Daniela & Echegaray, Marcelo & Rodriguez, Rosa & Zhang, Huili & Mazza, Germán, 2020. "4-E (environmental, economic, energetic and exergetic) analysis of slow pyrolysis of lignocellulosic waste," Renewable Energy, Elsevier, vol. 162(C), pages 296-307.
    6. ABM Abdul Malek & M Hasanuzzaman & Nasrudin A Rahim & Yusuf A Al–Turki, 2021. "Energy, economic, and environmental analysis of 10-MW biomass gasification based power generation in Malaysia," Energy & Environment, , vol. 32(2), pages 295-337, March.
    7. Subotić, Vanja & Baldinelli, Arianna & Barelli, Linda & Scharler, Robert & Pongratz, Gernot & Hochenauer, Christoph & Anca-Couce, Andrés, 2019. "Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour," Applied Energy, Elsevier, vol. 256(C).
    8. Habibollahzade, Ali & Rosen, Marc A., 2021. "Syngas-fueled solid oxide fuel cell functionality improvement through appropriate feedstock selection and multi-criteria optimization using Air/O2-enriched-air gasification agents," Applied Energy, Elsevier, vol. 286(C).
    9. Ouyang, Tiancheng & Zhang, Mingliang & Qin, Peijia & Liu, Wenjun & Shi, Xiaomin, 2022. "Converting waste into electric energy and carbon fixation through biosyngas-fueled SOFC hybrid system: A simulation study," Renewable Energy, Elsevier, vol. 193(C), pages 725-743.
    10. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    11. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    12. Zhang, Xiaofeng & Liu, Wenjing & Pan, Jinjun & Zhao, Bin & Yi, Zhengyuan & He, Xu & Liu, Yuting & Li, Hongqiang, 2024. "Comprehensive performance assessment of a novel biomass-based CCHP system integrated with SOFC and HT-PEMFC," Energy, Elsevier, vol. 295(C).
    13. Alirahmi, Seyed Mojtaba & Ebrahimi-Moghadam, Amir, 2022. "Comparative study, working fluid selection, and optimal design of three systems for electricity and freshwater based on solid oxide fuel cell mover cycle," Applied Energy, Elsevier, vol. 323(C).
    14. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Paul Roskilly, Anthony, 2023. "Fuel cell integrated carbon negative power generation from biomass," Applied Energy, Elsevier, vol. 331(C).
    16. Hafiz Muhammad Uzair Ayub & Sang Jin Park & Michael Binns, 2020. "Biomass to Syngas: Modified Stoichiometric Thermodynamic Models for Downdraft Biomass Gasification," Energies, MDPI, vol. 13(20), pages 1-14, October.
    17. Chitgar, Nazanin & Moghimi, Mahdi, 2020. "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production," Energy, Elsevier, vol. 197(C).
    18. Aghabalazadeh, Mohammad & Neshat, Elaheh, 2024. "Proposal and optimization of a novel biomass-based tri-generation system using energy, exergy and exergoeconomic analyses and design of experiments method," Energy, Elsevier, vol. 288(C).
    19. Cavalli, A. & Fernandes, A. & Aravind, P.V., 2021. "Thermodynamic analysis of an improved integrated biomass gasifier solid oxide fuel cell micro combined heat and power system," Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habibollahzade, Ali & Rosen, Marc A., 2021. "Syngas-fueled solid oxide fuel cell functionality improvement through appropriate feedstock selection and multi-criteria optimization using Air/O2-enriched-air gasification agents," Applied Energy, Elsevier, vol. 286(C).
    2. Wu, Zhen & Zhu, Pengfei & Yao, Jing & Zhang, Shengan & Ren, Jianwei & Yang, Fusheng & Zhang, Zaoxiao, 2020. "Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations," Applied Energy, Elsevier, vol. 279(C).
    3. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    4. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    5. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    6. Mehr, A.S. & Moharramian, A. & Hossainpour, S. & Pavlov, Denis A., 2020. "Effect of blending hydrogen to biogas fuel driven from anaerobic digestion of wastewater on the performance of a solid oxide fuel cell system," Energy, Elsevier, vol. 202(C).
    7. Liang, Wenxing & Yu, Zeting & Liu, Wenjing & Ji, Shaobo, 2023. "Investigation of a novel near-zero emission poly-generation system based on biomass gasification and SOFC: A thermodynamic and exergoeconomic evaluation," Energy, Elsevier, vol. 282(C).
    8. Abedinia, Oveis & Shakibi, Hamid & Shokri, Afshar & Sobhani, Behnam & Sobhani, Behrouz & Yari, Mortaza & Bagheri, Mehdi, 2024. "Optimization of a syngas-fueled SOFC-based multigeneration system: Enhanced performance with biomass and gasification agent selection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Jia, Junxi & Shu, Lingyun & Zang, Guiyan & Xu, Lijun & Abudula, Abuliti & Ge, Kun, 2018. "Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system," Energy, Elsevier, vol. 149(C), pages 750-761.
    10. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    11. Malfuzi, A. & Mehr, A.S. & Rosen, Marc A. & Alharthi, M. & Kurilova, A.A., 2020. "Economic viability of bitcoin mining using a renewable-based SOFC power system to supply the electrical power demand," Energy, Elsevier, vol. 203(C).
    12. Mehr, A.S. & MosayebNezhad, M. & Lanzini, A. & Yari, M. & Mahmoudi, S.M.S. & Santarelli, M., 2018. "Thermodynamic assessment of a novel SOFC based CCHP system in a wastewater treatment plant," Energy, Elsevier, vol. 150(C), pages 299-309.
    13. Esmaeil Jadidi & Mohammad Hasan Khoshgoftar Manesh & Mostafa Delpisheh & Viviani Caroline Onishi, 2021. "Advanced Exergy, Exergoeconomic, and Exergoenvironmental Analyses of Integrated Solar-Assisted Gasification Cycle for Producing Power and Steam from Heavy Refinery Fuels," Energies, MDPI, vol. 14(24), pages 1-29, December.
    14. Alvaro Fernandes & Joerg Brabandt & Oliver Posdziech & Ali Saadabadi & Mayra Recalde & Liyuan Fan & Eva O. Promes & Ming Liu & Theo Woudstra & Purushothaman Vellayan Aravind, 2018. "Design, Construction, and Testing of a Gasifier-Specific Solid Oxide Fuel Cell System," Energies, MDPI, vol. 11(8), pages 1-17, July.
    15. Mehr, A.S. & Lanzini, A. & Santarelli, M. & Rosen, Marc A., 2021. "Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches," Energy, Elsevier, vol. 228(C).
    16. Saebea, Dang & Magistri, Loredana & Massardo, Aristide & Arpornwichanop, Amornchai, 2017. "Cycle analysis of solid oxide fuel cell-gas turbine hybrid systems integrated ethanol steam reformer: Energy management," Energy, Elsevier, vol. 127(C), pages 743-755.
    17. Sadeghi, Mohsen & Seyed Mahmoudi, Seyed Mohammad & Rosen, Marc A., 2022. "Thermoeconomic analysis of two solid oxide fuel cell based cogeneration plants integrated with simple or modified supercritical CO2 Brayton cycles: A comparative study," Energy, Elsevier, vol. 259(C).
    18. Liang, Wenxing & Yu, Zeting & Bian, Feiyu & Wu, Haonan & Zhang, Kaifan & Ji, Shaobo & Cui, Bo, 2023. "Techno-economic-environmental analysis and optimization of biomass-based SOFC poly-generation system," Energy, Elsevier, vol. 285(C).
    19. Wang, Xusheng & Lv, Xiaojing & Mi, Xicong & Spataru, Catalina & Weng, Yiwu, 2022. "Coordinated control approach for load following operation of SOFC-GT hybrid system," Energy, Elsevier, vol. 248(C).
    20. Pongratz, Gernot & Subotić, Vanja & Hochenauer, Christoph & Scharler, Robert & Anca-Couce, Andrés, 2022. "Solid oxide fuel cell operation with biomass gasification product gases: Performance- and carbon deposition risk evaluation via a CFD modelling approach," Energy, Elsevier, vol. 244(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:171:y:2019:i:c:p:1126-1138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.