IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v195y2017icp713-724.html
   My bibliography  Save this article

Characterisation of the morphological changes and interactions in char, slag and ash during CO2 gasification of rice straw and lignite

Author

Listed:
  • Ding, Lu
  • Gong, Yan
  • Wang, Yifei
  • Wang, Fuchen
  • Yu, Guangsuo

Abstract

In this work, a heating stage microscope and a thermogravimetric analyzer were adopted to explore behaviors of char-slag/ash transition during CO2 gasification of rice straw (RS) and Neimeng lignite (NM). Effects of demineralized treatment and various gasification temperatures on the char-slag/ash evolution process were studied. Both RS and NM particles exhibited shrinkage particle form at a moderate reaction temperature (1000°C). The variation of the existential state of K with char-slag/ash transition could well explain the reactivity differences between RS raw char and demineralized char. Compared to RS raw char, NM raw char showed a more significant flow of molten slag at 1350°C, which accounted for the high inhibitory effects at the late stage of NM raw char gasification. There is a threshold conversion (x=0.9) during the evolution processes of NM char samples to NM slag/ash at 1200°C and 1350°C, while this threshold value is only existing at 1000°C for RS char gasification.

Suggested Citation

  • Ding, Lu & Gong, Yan & Wang, Yifei & Wang, Fuchen & Yu, Guangsuo, 2017. "Characterisation of the morphological changes and interactions in char, slag and ash during CO2 gasification of rice straw and lignite," Applied Energy, Elsevier, vol. 195(C), pages 713-724.
  • Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:713-724
    DOI: 10.1016/j.apenergy.2017.03.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917303379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fatehi, Hesameddin & Bai, Xue-Song, 2017. "Structural evolution of biomass char and its effect on the gasification rate," Applied Energy, Elsevier, vol. 185(P2), pages 998-1006.
    2. Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
    3. Yilgin, Melek & Pehlivan, Dursun, 2009. "Volatiles and char combustion rates of demineralised lignite and wood blends," Applied Energy, Elsevier, vol. 86(7-8), pages 1179-1186, July.
    4. Nakamura, Shunsuke & Kitano, Shigeru & Yoshikawa, Kunio, 2016. "Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed," Applied Energy, Elsevier, vol. 170(C), pages 186-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junjie Xue & Zhen Dong & Hao Chen & Mengyuan Zhang & Yufeng Zhao & Yanpeng Chen & Shanshan Chen, 2024. "Gasification of the Char Residues with High Ash Content by Carbon Dioxide," Energies, MDPI, vol. 17(17), pages 1-35, September.
    2. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    3. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
    4. Mosqueda, Alexander & Wei, Juntao & Medrano, Katleya & Gonzales, Hazel & Ding, Lu & Yu, Guangsuo & Yoshikawa, Kunio, 2019. "Co-gasification reactivity and synergy of banana residue hydrochar and anthracite coal blends," Applied Energy, Elsevier, vol. 250(C), pages 92-97.
    5. Chen, Xiaodong & Kong, Lingxue & Bai, Jin & Dai, Xin & Li, Huaizhu & Bai, Zongqing & Li, Wen, 2017. "The key for sodium-rich coal utilization in entrained flow gasifier: The role of sodium on slag viscosity-temperature behavior at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 1241-1249.
    6. Li, Hongjun & Chang, Qinghua & Gao, Rui & Dai, Zhenghua & Chen, Xueli & Yu, Guangsuo & Wang, Fuchen, 2018. "Fractal characteristics and reactivity evolution of lignite during the upgrading process by supercritical CO2 extraction," Applied Energy, Elsevier, vol. 225(C), pages 559-569.
    7. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
    8. Li, Fenghai & Li, Yang & Fan, Hongli & Wang, Tao & Guo, Mingxi & Fang, Yitian, 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification," Energy, Elsevier, vol. 174(C), pages 724-734.
    9. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.
    10. Sakiewicz, Piotr & Piotrowski, Krzysztof & Kalisz, Sylwester, 2020. "Neural network prediction of parameters of biomass ashes, reused within the circular economy frame," Renewable Energy, Elsevier, vol. 162(C), pages 743-753.
    11. Yu, Xin & Yu, Dunxi & Liu, Fangqi & Han, Jingkun & Wu, Jianqun & Xu, Minghou, 2022. "Synergistic effects, gas evolution and ash interaction during isothermal steam co-gasification of biomass with high-sulfur petroleum coke," Energy, Elsevier, vol. 240(C).
    12. He, Qing & Yu, Junqin & Song, Xudong & Ding, Lu & Wei, Juntao & Yu, Guangsuo, 2020. "Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components," Energy, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.
    2. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    3. Ding, Lu & Dai, Zhenghua & Guo, Qinghua & Yu, Guangsuo, 2017. "Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry," Applied Energy, Elsevier, vol. 187(C), pages 627-639.
    4. Tao, Meng & Jl, Xie & Xm, Li & Jw, Ma & Yang, Yue, 2020. "Experimental study on the evolutional trend of pore structures and fractal dimension of low-rank coal rich clay subjected to a coupled thermo-hydro-mechanical-chemical environment," Energy, Elsevier, vol. 203(C).
    5. Rajat Kumar Sharma & Mohammad Ali Nazari & Juma Haydary & Triveni Prasad Singh & Sandip Mandal, 2023. "A Review on Advanced Processes of Biohydrogen Generation from Lignocellulosic Biomass with Special Emphasis on Thermochemical Conversion," Energies, MDPI, vol. 16(17), pages 1-27, September.
    6. Wu, Zhiqiang & Yang, Wangcai & Meng, Haiyu & Zhao, Jun & Chen, Lin & Luo, Zhengyuan & Wang, Shuzhong, 2017. "Physicochemical structure and gasification reactivity of co-pyrolysis char from two kinds of coal blended with lignocellulosic biomass: Effects of the carboxymethylcellulose sodium," Applied Energy, Elsevier, vol. 207(C), pages 96-106.
    7. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    8. Ahmed, I.I. & Gupta, A.K., 2011. "Particle size, porosity and temperature effects on char conversion," Applied Energy, Elsevier, vol. 88(12), pages 4667-4677.
    9. Huang, Zhen & Zheng, Anqing & Deng, Zhengbing & Wei, Guoqiang & Zhao, Kun & Chen, Dezhen & He, Fang & Zhao, Zengli & Li, Haibin & Li, Fanxing, 2020. "In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier," Energy, Elsevier, vol. 190(C).
    10. Susastriawan, A.A.P. & Saptoadi, Harwin & Purnomo,, 2017. "Small-scale downdraft gasifiers for biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 989-1003.
    11. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Jiang, Shengjuan & Hu, Xun & Xia, Daohong & Li, Chun-Zhu, 2016. "Formation of aromatic ring structures during the thermal treatment of mallee wood cylinders at low temperature," Applied Energy, Elsevier, vol. 183(C), pages 542-551.
    13. Aydin, Ebubekir Siddik & Yucel, Ozgun & Sadikoglu, Hasan, 2017. "Development of a semi-empirical equilibrium model for downdraft gasification systems," Energy, Elsevier, vol. 130(C), pages 86-98.
    14. Borello, D. & Cedola, L. & Frangioni, G.V. & Meloni, R. & Venturini, P. & De Filippis, P. & de Caprariis, B., 2016. "Development of a numerical model for biomass packed bed pyrolysis based on experimental validation," Applied Energy, Elsevier, vol. 164(C), pages 956-962.
    15. Jeong, Yong-Seong & Choi, Young-Kon & Park, Ki-Bum & Kim, Joo-Sik, 2019. "Air co-gasification of coal and dried sewage sludge in a two-stage gasifier: Effect of blending ratio on the producer gas composition and tar removal," Energy, Elsevier, vol. 185(C), pages 708-716.
    16. Han, Si Woo & Lee, Jeong Jae & Tokmurzin, Diyar & Lee, Seok Hyeong & Nam, Ji Young & Park, Sung Jin & Ra, Ho Won & Mun, Tae-Young & Yoon, Sang Jun & Yoon, Sung Min & Moon, Ji Hong & Lee, Jae Goo & Kim, 2022. "Gasification characteristics of waste plastics (SRF) in a bubbling fluidized bed: Effects of temperature and equivalence ratio," Energy, Elsevier, vol. 238(PC).
    17. Salinero, J. & Gómez-Barea, A. & Fuentes-Cano, D. & Leckner, B., 2018. "The influence of CO2 gas concentration on the char temperature and conversion during oxy-fuel combustion in a fluidized bed," Applied Energy, Elsevier, vol. 215(C), pages 116-130.
    18. Jeong, Yong-Seong & Choi, Young-Kon & Kim, Joo-Sik, 2019. "Three-stage air gasification of waste polyethylene: In-situ regeneration of active carbon used as a tar removal additive," Energy, Elsevier, vol. 166(C), pages 335-342.
    19. Zhai, Ming & Liu, Jianing & Wang, Ze & Guo, Li & Wang, Xinyu & Zhang, Yu & Dong, Peng & Sun, Jiawei, 2017. "Gasification characteristics of sawdust char at a high-temperature steam atmosphere," Energy, Elsevier, vol. 128(C), pages 509-518.
    20. Montagnaro, Fabio & Zaccariello, Lucio, 2023. "Performance assessment of a demonstration-scale biomass gasification power plant using material and energy flow analyses," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:195:y:2017:i:c:p:713-724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.