IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v145y2018icp1-16.html
   My bibliography  Save this article

Co-firing of coal/biomass blends in a pilot plant facility: A comparative study between Opuntia ficus-indica and Pinus radiata

Author

Listed:
  • Pérez-Jeldres, Rubén
  • Flores, Mauricio
  • Cornejo, Pablo
  • Gordon, Alfredo
  • García, Ximena

Abstract

Chile has begun to promote the use of biomass to replace a fraction of the energy produced from coal. However, the power plants are located in the world driest desert, the Atacama Desert, and far from the forest resources. Fortunately, a cactaceous species named Opuntia ficus-indica, has proven to be able to grow under climate desert conditions. In this study the behavior of Opuntia ficus-indica under co-firing conditions with coal, is evaluated and compared to that of Pinus radiata, in terms of heat transfer, ash deposits formation and pollutant emissions in a 150 kW fluidized bed pilot plant. The results revealed a variation of the temperature profile inside the reactor, as well as a relationship between the efficacy factor and the base-acid ratio. The heat transfer coefficients in the dense bed evidenced a decrease in the heat transfers mechanisms attributed to a variation of the mean particle diameter and a greater presence of fuel particles. Under coal-Pine co-firing conditions, an increase in NO formation and a decrease of PM and SO2 concentrations was observed. While co-firing coal with Opuntia showed an increase in the particulate matter and a reduction of NO and SO2 concentrations.

Suggested Citation

  • Pérez-Jeldres, Rubén & Flores, Mauricio & Cornejo, Pablo & Gordon, Alfredo & García, Ximena, 2018. "Co-firing of coal/biomass blends in a pilot plant facility: A comparative study between Opuntia ficus-indica and Pinus radiata," Energy, Elsevier, vol. 145(C), pages 1-16.
  • Handle: RePEc:eee:energy:v:145:y:2018:i:c:p:1-16
    DOI: 10.1016/j.energy.2017.10.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217317589
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shao, Yuanyuan & Wang, Jinsheng & Xu, Chunbao (Charles) & Zhu, Jesse & Preto, Fernando & Tourigny, Guy & Badour, Chadi & Li, Hanning, 2011. "An experimental and modeling study of ash deposition behaviour for co-firing peat with lignite," Applied Energy, Elsevier, vol. 88(8), pages 2635-2640, August.
    2. Martín, Carmen & Villamañán, Miguel A. & Chamorro, César R. & Otero, Juan & Cabanillas, Andrés & Segovia, José J., 2006. "Low-grade coal and biomass co-combustion on fluidized bed: exergy analysis," Energy, Elsevier, vol. 31(2), pages 330-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    2. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    3. Li, Fenghai & Li, Yang & Fan, Hongli & Wang, Tao & Guo, Mingxi & Fang, Yitian, 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification," Energy, Elsevier, vol. 174(C), pages 724-734.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khoa, T.D. & Shuhaimi, M. & Hashim, H. & Panjeshahi, M.H., 2010. "Optimal design of distillation column using three dimensional exergy analysis curves," Energy, Elsevier, vol. 35(12), pages 5309-5319.
    2. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
    3. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Cheng Heng & Liu, Hao & Parvez, Ashak M. & Wu, Tao, 2017. "A novel index for the study of synergistic effects during the co-processing of coal and biomass," Applied Energy, Elsevier, vol. 188(C), pages 215-225.
    4. Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.
    5. Wieland, Christoph & Kreutzkam, Benjamin & Balan, Gundula & Spliethoff, Hartmut, 2012. "Evaluation, comparison and validation of deposition criteria for numerical simulation of slagging," Applied Energy, Elsevier, vol. 93(C), pages 184-192.
    6. Topal, Huseyin & Taner, Tolga & Naqvi, Syed Arslan Hassan & Altınsoy, Yelda & Amirabedin, Ehsan & Ozkaymak, Mehmet, 2017. "Exergy analysis of a circulating fluidized bed power plant co-firing with olive pits: A case study of power plant in Turkey," Energy, Elsevier, vol. 140(P1), pages 40-46.
    7. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    8. Luan, Chao & You, Changfu & Zhang, Dongke, 2014. "Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace," Energy, Elsevier, vol. 69(C), pages 562-570.
    9. Li, Guangyu & Xu, Shisen & Zhao, Xuebin & Sun, Ruijin & Wang, Chang’an & Liu, Kang & Mao, Qisen & Che, Defu, 2020. "Investigation of chemical composition and morphology of ash deposition in syngas cooler of an industrialized two-stage entrained-flow coal gasifier," Energy, Elsevier, vol. 194(C).
    10. Tao, Guangcan & Lestander, Torbjörn A. & Geladi, Paul & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3481-3506.
    11. Oladejo, Jumoke & Adegbite, Stephen & Gao, Xiang & Liu, Hao & Wu, Tao, 2018. "Catalytic and non-catalytic synergistic effects and their individual contributions to improved combustion performance of coal/biomass blends," Applied Energy, Elsevier, vol. 211(C), pages 334-345.
    12. Namkung, Hueon & Xu, Li-Hua & Kang, Tae-Jin & Kim, Dae Sung & Kwon, Hyok-Bo & Kim, Hyung-Taek, 2013. "Prediction of coal fouling using an alternative index under the gasification condition," Applied Energy, Elsevier, vol. 102(C), pages 1246-1255.
    13. Gungor, Afsin, 2009. "Second law analysis of heat transfer surfaces in circulating fluidized beds," Applied Energy, Elsevier, vol. 86(7-8), pages 1344-1353, July.
    14. Compton, M. & Rezaie, B., 2017. "Enviro-exergy sustainability analysis of boiler evolution in district energy system," Energy, Elsevier, vol. 119(C), pages 257-265.
    15. Gong, Yan & Zhang, Qing & Guo, Qinghua & Xue, Zhicun & Wang, Fuchen & Yu, Guangsuo, 2017. "Vision-based investigation on the ash/slag particle deposition characteristics in an impinging entrained-flow gasifier," Applied Energy, Elsevier, vol. 206(C), pages 1184-1193.
    16. Coskun, C. & Oktay, Z. & Ilten, N., 2009. "A new approach for simplifying the calculation of flue gas specific heat and specific exergy value depending on fuel composition," Energy, Elsevier, vol. 34(11), pages 1898-1902.
    17. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    18. Yuanyuan Shao & Jinsheng Wang & Fernando Preto & Jesse Zhu & Chunbao Xu, 2012. "Ash Deposition in Biomass Combustion or Co-Firing for Power/Heat Generation," Energies, MDPI, vol. 5(12), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:145:y:2018:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.