IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032231.html
   My bibliography  Save this article

Ash fusion behavior modification mechanisms of high-calcium coal by coal blending and its ash viscosity predication

Author

Listed:
  • Li, Fenghai
  • Zhou, Meijie
  • zhao, Wei
  • Liu, Xuefei
  • Yang, Ziqiang
  • Fan, Hongli
  • Han, Guopeng
  • Li, Junguo
  • Xu, Meiling
  • Fang, Yitian

Abstract

In this paper, the ash fusion temperature (AFT) modification of high calcium Huolinhe lignite (HLH) with the addition of high aluminum Datong coal (DTC) and their corresponding mechanisms were investigated by an AFT tester, X-ray diffractometer, Raman spectrometer, and FactSage software. The AFTs of HLH mixtures increased gradually with the increasing DTC mass ratio due to their corresponding decrease in the total basic oxide content of CaO, MgO, Fe2O3, Na2O, and K2O. The formations and content increases of high melting-point minerals (anorthite, cordierite, and mullite), the gradual decrease in the ratios of no bridging-oxide bond/bridging-oxide bond (NBO/BO), and an increase in the R (R = (Q3 + Q2)/(Q1 + Q0)) value resulted in the increases in the AFT and ash viscosity. Considering the variations in the characteristics of AFT and ash viscosity, the 40.0–50.0 % DTC mass ratio might be suitable for HLH entrained-flow bed (EFB) gasification. The combination of AFT measurement and ash viscosity predication using FactSage provided a simple method to determine whether ash characteristics of coal were suitable for EFB gasification.

Suggested Citation

  • Li, Fenghai & Zhou, Meijie & zhao, Wei & Liu, Xuefei & Yang, Ziqiang & Fan, Hongli & Han, Guopeng & Li, Junguo & Xu, Meiling & Fang, Yitian, 2024. "Ash fusion behavior modification mechanisms of high-calcium coal by coal blending and its ash viscosity predication," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032231
    DOI: 10.1016/j.energy.2023.129829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Fenghai & Li, Yang & Fan, Hongli & Wang, Tao & Guo, Mingxi & Fang, Yitian, 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification," Energy, Elsevier, vol. 174(C), pages 724-734.
    2. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    3. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Chengheng & Liu, Hao & Lester, Edward & Wu, Tao, 2020. "In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends," Energy, Elsevier, vol. 199(C).
    4. Gupta, Saurabh & De, Santanu, 2022. "An experimental investigation of high-ash coal gasification in a pilot-scale bubbling fluidized bed reactor," Energy, Elsevier, vol. 244(PB).
    5. Schulze, S. & Richter, A. & Vascellari, M. & Gupta, A. & Meyer, B. & Nikrityuk, P.A., 2016. "Novel intrinsic-based submodel for char particle gasification in entrained-flow gasifiers: Model development, validation and illustration," Applied Energy, Elsevier, vol. 164(C), pages 805-814.
    6. Pashchenko, Dmitry, 2021. "Industrial furnaces with thermochemical waste-heat recuperation by coal gasification," Energy, Elsevier, vol. 221(C).
    7. Li, Fenghai & Yang, Ziqiang & Li, Yang & Han, Guopeng & Fan, Hongli & Liu, Xuefei & Xu, Meiling & Guo, Mingxi & Fang, Yitian, 2023. "The effects of Na2O/K2O flux on ash fusion characteristics for high silicon-aluminum coal in entrained-flow bed gasification," Energy, Elsevier, vol. 282(C).
    8. P, Ramakrishnan & Singh, Jagadish Kumar & Sahoo, Abanti & Mohapatra, Soumya Sanjeeb, 2023. "CFD simulation for coal gasification in fluidized bed gasifier," Energy, Elsevier, vol. 281(C).
    9. Jiang, Peng & Meng, Yang & Parvez, Ashak Mahmud & Dong, Xin-yue & Wu, Xin-yun & Xu, Meng-xia & Pang, Cheng Heng & Sun, Cheng-gong & Wu, Tao, 2021. "Influence of co-processing of coal and oil shale on combustion characteristics, kinetics and ash fusion behaviour," Energy, Elsevier, vol. 216(C).
    10. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    11. Li, Fenghai & Zhao, Wei & Li, Junguo & Fan, Hongli & Xu, Meiling & Han, Guopeng & Guo, Mingxi & Wang, Zhiqing & Huang, Jiejie & Fang, Yitian, 2023. "Investigation on influencing mechanisms of phosphogypsum (PG) on the ash fusion behaviors of coal," Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Fenghai & Yang, Ziqiang & Li, Yang & Han, Guopeng & Fan, Hongli & Liu, Xuefei & Xu, Meiling & Guo, Mingxi & Fang, Yitian, 2023. "The effects of Na2O/K2O flux on ash fusion characteristics for high silicon-aluminum coal in entrained-flow bed gasification," Energy, Elsevier, vol. 282(C).
    2. Li, Fenghai & Zhao, Wei & Li, Junguo & Fan, Hongli & Xu, Meiling & Han, Guopeng & Guo, Mingxi & Wang, Zhiqing & Huang, Jiejie & Fang, Yitian, 2023. "Investigation on influencing mechanisms of phosphogypsum (PG) on the ash fusion behaviors of coal," Energy, Elsevier, vol. 268(C).
    3. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    4. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    5. Jiang, Jiahao & Tie, Yuan & Deng, Lei & Che, Defu, 2022. "Influence of water-washing pretreatment on ash fusibility of biomass," Renewable Energy, Elsevier, vol. 200(C), pages 125-135.
    6. Yao, Xiwen & Zhou, Haodong & Xu, Keqiang & Liu, Qinghua & Xu, Kaili, 2024. "Understanding impacts of introducing CO2 in N2 and operation conditions on physicochemical property and fusion behaviour of solid products during thermal decomposition of corn stalks," Renewable Energy, Elsevier, vol. 221(C).
    7. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    9. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Wang, Qian & Han, Kuihua & Wang, Peifu & Li, Shijie & Zhang, Mingyang, 2020. "Influence of additive on ash and combustion characteristics during biomass combustion under O2/CO2 atmosphere," Energy, Elsevier, vol. 195(C).
    11. Kareemulla, Dudekula & Gusev, Sergey & Bhattacharya, Sankar & Mahajani, Sanjay M., 2024. "Entrained-flow pyrolysis and (co-)gasification characteristics of Indian high-ash coals," Energy, Elsevier, vol. 294(C).
    12. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).
    13. Zhan, Honglei & Qin, Fankai & Chen, Sitong & Chen, Ru & Meng, Zhaohui & Miao, Xinyang & Zhao, Kun, 2022. "Two-step pyrolysis degradation mechanism of oil shale through comprehensive analysis of pyrolysis semi-cokes and pyrolytic gases," Energy, Elsevier, vol. 241(C).
    14. Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
    15. Zhao, Shufeng & Guo, Hongyu & Liu, Ang & Chen, Zhenhong & Li, Guofu & Chen, Linyong & Shen, Ye, 2024. "Methane production and microbial community characteristics in the co-digestion of biodegradable plastics with lignite," Energy, Elsevier, vol. 305(C).
    16. Reinmöller, Markus & Schreiner, Marcus & Laabs, Marcel & Scharm, Christoph & Yao, Zhitong & Guhl, Stefan & Neuroth, Manuela & Meyer, Bernd & Gräbner, Martin, 2023. "Formation and transformation of mineral phases in biomass ashes and evaluation of the feedstocks for application in high-temperature processes," Renewable Energy, Elsevier, vol. 210(C), pages 627-639.
    17. Wang, Chang’an & Zhou, Lei & Fan, Gaofeng & Yuan, Maobo & Zhao, Lei & Tang, Guantao & Liu, Chengchang & Che, Defu, 2021. "Experimental study on ash morphology, fusibility, and mineral transformation during co-combustion of antibiotic filter residue and biomass," Energy, Elsevier, vol. 217(C).
    18. Zhou, Tianxing & Zhang, Weiwei & Luo, Siyi & Zuo, Zongliang & Ren, Dongdong, 2023. "The effect of ash fusion characteristic on the structure characteristics of carbon and the migration of potassium during rice straw high-temperature gasification process," Energy, Elsevier, vol. 284(C).
    19. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    20. Chen, Chunxiang & Li, Bingjie & He, Lihui & Wei, Guangsheng & Qin, Shuo, 2024. "Slagging tendency analysis and evaluation of biomass and coal during co-firing," Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.