IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220313797.html
   My bibliography  Save this article

On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study

Author

Listed:
  • Mikhaeil, Makram
  • Gaderer, Matthias
  • Dawoud, Belal

Abstract

An innovative adsorber plate heat exchanger (APHE), which is developed for application in adsorption heat pumps, chillers and thermal energy storage systems, is introduced. A test frame has been constructed as a representative segment of the introduced APHE for applying loose grains of AQSOA-Z02. Adsorption kinetic measurements have been carried out in a volumetric large-temperature-jump setup under typical operating conditions of adsorption processes. A transient 2-D model is developed for the tested sample inside the setup. The measured temporal uptake variations with time have been fed to the model, through which a micro-pore diffusion coefficient at infinite temperature of 2 E−4 [m2s−1] and an activation energy of 42.1 [kJ mol−1] have been estimated. A 3-D model is developed to simulate the combined heat and mass transfer inside the APHE and implemented in a commercial software. Comparing the obtained results with the literature values for an extruded aluminium adsorber heat exchanger coated with a 500 μm layer of the same adsorbent, the differential water uptake obtained after 300 s of adsorption (8.2 g/100 g) implies a sound enhancement of 310%. This result proves the great potential of the introduced APHE to remarkably enhance the performance of adsorption heat transformation appliances.

Suggested Citation

  • Mikhaeil, Makram & Gaderer, Matthias & Dawoud, Belal, 2020. "On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313797
    DOI: 10.1016/j.energy.2020.118272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Fadar, Abdellah, 2016. "Novel process for performance enhancement of a solar continuous adsorption cooling system," Energy, Elsevier, vol. 114(C), pages 10-23.
    2. Pesaran, Alireza & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2016. "Review article: Numerical simulation of adsorption heat pumps," Energy, Elsevier, vol. 100(C), pages 310-320.
    3. Saha, Bidyut Baran & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Koyama, Shigeru & Henninger, Stefan K. & Herbst, Annika & Janiak, Christoph, 2015. "Ethanol adsorption onto metal organic framework: Theory and experiments," Energy, Elsevier, vol. 79(C), pages 363-370.
    4. Proverbio, Edoardo & Calabrese, Luigi & Caprì, Angela & Bonaccorsi, Lucio & Dawoud, Belal & Frazzica, Andrea, 2017. "Susceptibility to corrosion of aluminium alloy components in ethanol adsorption chiller," Renewable Energy, Elsevier, vol. 110(C), pages 174-179.
    5. Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo, 2011. "Influence of the management strategy and operating conditions on the performance of an adsorption chiller," Energy, Elsevier, vol. 36(9), pages 5532-5538.
    6. Aristov, Yuriy I. & Glaznev, Ivan S. & Girnik, Ilya S., 2012. "Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration," Energy, Elsevier, vol. 46(1), pages 484-492.
    7. Gordeeva, Larisa & Frazzica, Andrea & Sapienza, Alessio & Aristov, Yuri & Freni, Angelo, 2014. "Adsorption cooling utilizing the “LiBr/silica – ethanol” working pair: Dynamic optimization of the adsorber/heat exchanger unit," Energy, Elsevier, vol. 75(C), pages 390-399.
    8. Yeboah, S.K. & Darkwa, J., 2016. "A critical review of thermal enhancement of packed beds for water vapour adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1500-1520.
    9. Wang, L.W. & Wang, R.Z. & Wu, J.Y. & Xu, Y.X. & Wang, S.G., 2006. "Design, simulation and performance of a waste heat driven adsorption ice maker for fishing boat," Energy, Elsevier, vol. 31(2), pages 244-259.
    10. Golparvar, Behzad & Niazmand, Hamid & Sharafian, Amir & Ahmadian Hosseini, Amirjavad, 2018. "Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system," Applied Energy, Elsevier, vol. 232(C), pages 504-516.
    11. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    12. Frazzica, Andrea & Freni, Angelo, 2017. "Adsorbent working pairs for solar thermal energy storage in buildings," Renewable Energy, Elsevier, vol. 110(C), pages 87-94.
    13. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    14. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    2. Alicia Crespo & Cèsar Fernández & Alvaro de Gracia & Andrea Frazzica, 2022. "Solar-Driven Sorption System for Seasonal Heat Storage under Optimal Control: Study for Different Climatic Zones," Energies, MDPI, vol. 15(15), pages 1-23, August.
    3. Crespo, Alicia & Fernández, Cèsar & Vérez, David & Tarragona, Joan & Borri, Emiliano & Frazzica, Andrea & Cabeza, Luisa F. & de Gracia, Alvaro, 2023. "Thermal performance assessment and control optimization of a solar-driven seasonal sorption storage system for residential application," Energy, Elsevier, vol. 263(PA).
    4. Steven Metcalf & Ángeles Rivero-Pacho & Robert Critoph, 2021. "Design and Large Temperature Jump Testing of a Modular Finned-Tube Carbon–Ammonia Adsorption Generator for Gas-Fired Heat Pumps," Energies, MDPI, vol. 14(11), pages 1-17, June.
    5. Andreas Velte & Lukas Joos & Gerrit Füldner, 2022. "Experimental Performance Analysis of Adsorption Modules with Sintered Aluminium Fiber Heat Exchangers and SAPO-34-Water Working Pair for Gas-Driven Heat Pumps: Influence of Evaporator Size, Temperatur," Energies, MDPI, vol. 15(8), pages 1-23, April.
    6. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Tomasz Bujok & Piotr Boruta & Łukasz Mika & Karol Sztekler, 2021. "Analysis of Designs of Heat Exchangers Used in Adsorption Chillers," Energies, MDPI, vol. 14(23), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadzadeh Kowsari, Milad & Niazmand, Hamid & Tokarev, Mikhail Mikhailovich, 2018. "Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation," Applied Energy, Elsevier, vol. 213(C), pages 540-554.
    2. Grabowska, K. & Sztekler, K. & Krzywanski, J. & Sosnowski, M. & Stefanski, S. & Nowak, W., 2021. "Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. experimental research of coated bed samples," Energy, Elsevier, vol. 215(PA).
    3. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    4. Frazzica, A. & Palomba, V. & Dawoud, B. & Gullì, G. & Brancato, V. & Sapienza, A. & Vasta, S. & Freni, A. & Costa, F. & Restuccia, G., 2016. "Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair," Applied Energy, Elsevier, vol. 174(C), pages 15-24.
    5. Aristov, Yu. I., 2022. "Adsorption heat conversion and storage in closed systems: What have we learned over the past decade of this century?," Energy, Elsevier, vol. 239(PB).
    6. Strelova, S.V. & Aristov, Yu. I. & Gordeeva, L.G., 2023. "Dynamics of water vapour sorption on composite LiCl/(silica gel): An innovative configuration of the adsorbent bed," Energy, Elsevier, vol. 283(C).
    7. Dias, João M.S. & Costa, Vítor A.F., 2018. "Adsorption heat pumps for heating applications: A review of current state, literature gaps and development challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 317-327.
    8. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    9. Xu, Zhou & Yin, Yu & Shao, Junpeng & Liu, Yerong & Zhang, Lin & Cui, Qun & Wang, Haiyan, 2020. "Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube," Energy, Elsevier, vol. 191(C).
    10. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    11. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. N'Tsoukpoe, Kokouvi Edem & Restuccia, Giovanni & Schmidt, Thomas & Py, Xavier, 2014. "The size of sorbents in low pressure sorption or thermochemical energy storage processes," Energy, Elsevier, vol. 77(C), pages 983-998.
    13. Brancato, V. & Frazzica, A. & Sapienza, A. & Gordeeva, L. & Freni, A., 2015. "Ethanol adsorption onto carbonaceous and composite adsorbents for adsorptive cooling system," Energy, Elsevier, vol. 84(C), pages 177-185.
    14. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.
    15. Santamaria, Salvatore & Sapienza, Alessio & Frazzica, Andrea & Freni, Angelo & Girnik, Ilya S. & Aristov, Yuri I., 2014. "Water adsorption dynamics on representative pieces of real adsorbers for adsorptive chillers," Applied Energy, Elsevier, vol. 134(C), pages 11-19.
    16. Teng, W.S. & Leong, K.C. & Chakraborty, A., 2016. "Revisiting adsorption cooling cycle from mathematical modelling to system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 315-332.
    17. Wu, S. & Li, T.X. & Yan, T. & Wang, R.Z., 2019. "Advanced thermochemical resorption heat transformer for high-efficiency energy storage and heat transformation," Energy, Elsevier, vol. 175(C), pages 1222-1233.
    18. Li, Shuangjun & Yuan, Xiangzhou & Deng, Shuai & Zhao, Li & Lee, Ki Bong, 2021. "A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    20. Andrea Frazzica & Vincenza Brancato & Belal Dawoud, 2020. "Unified Methodology to Identify the Potential Application of Seasonal Sorption Storage Technology," Energies, MDPI, vol. 13(5), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.