IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v186y2017ip3p509-519.html
   My bibliography  Save this article

Thermal energy storage using metal–organic framework materials

Author

Listed:
  • Elsayed, Ahmed
  • Elsayed, Eman
  • AL-Dadah, Raya
  • Mahmoud, Saad
  • Elshaer, Amr
  • Kaialy, Waseem

Abstract

Metal–organic framework (MOF) materials are new adsorbent materials that have high surface area and pore volume and hence high adsorption uptake. The previous exceptional properties make this class of materials have a great potential in many applications like cooling, gas separation and energy storage. However, there is very limited information on the performance of metal–organic framework materials in energy storage applications and their performance compared to conventional adsorbents. This paper aims to present an experimental characterisation of CPO-27(Ni) MOF material for water adsorption and to investigate its viability for energy storage. CPO-27(Ni) (known as MOF-74(Ni)), which is a MOF material that has high water adsorption capabilities of 0.47gH2Ogads−1 and hydrothermally stable and can be supplied in large quantities. Firstly, the material water adsorption isotherms were predicated using Materials Studio software via the material structure information and then compared to the experimentally measured isotherms. The experimentally measured isotherms and kinetics were used to model a double bed adsorption system for energy storage application using Simulink–Matlab software coupled with Nist RefProp thermophysical routines. Finally, the performance of CPO-27(Ni) was then compared with silica gel. The CPO-27(Ni) was found to outperform silica gel at long half cycle time (more than 30min) at low evaporating temperature making it suitable for energy storage applications. The energy stored in the condenser and the adsorption bed was found to be dependent mostly on the regeneration and the cooling temperatures. The potential of the energy recovered from the adsorption bed can be double the one recovered from the condenser. Also, the energy recovery during condensation and adsorption was found to be independent of the reactor conductance except at small conductance ratio. Finally, the adsorption unit cooling water flow strategy was found to affect the amount of the energy recovered as recirculating the cooling water through the adsorption bed and then condenser was found to decrease the recovered energy from the condenser by 4%.

Suggested Citation

  • Elsayed, Ahmed & Elsayed, Eman & AL-Dadah, Raya & Mahmoud, Saad & Elshaer, Amr & Kaialy, Waseem, 2017. "Thermal energy storage using metal–organic framework materials," Applied Energy, Elsevier, vol. 186(P3), pages 509-519.
  • Handle: RePEc:eee:appene:v:186:y:2017:i:p3:p:509-519
    DOI: 10.1016/j.apenergy.2016.03.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916304342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.03.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, L. & Wang, L.W. & Zhang, X.F. & Liu, C.Z. & Wang, R.Z., 2015. "Performance prediction on a resorption cogeneration cycle for power and refrigeration with energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 1250-1259.
    2. Rezk, Ahmed & AL-Dadah, Raya & Mahmoud, Saad & Elsayed, Ahmed, 2013. "Investigation of Ethanol/metal organic frameworks for low temperature adsorption cooling applications," Applied Energy, Elsevier, vol. 112(C), pages 1025-1031.
    3. Solé, Aran & Martorell, Ingrid & Cabeza, Luisa F., 2015. "State of the art on gas–solid thermochemical energy storage systems and reactors for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 386-398.
    4. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    5. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    6. Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
    7. Jiang, L. & Zhu, F.Q. & Wang, L.W. & Liu, C.Z. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2–CaCl2–NH3 thermal energy storage system," Renewable Energy, Elsevier, vol. 91(C), pages 130-136.
    8. Li, Gang & Qian, Suxin & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard, 2014. "Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application," Energy, Elsevier, vol. 65(C), pages 675-691.
    9. Stitou, Driss & Mazet, Nathalie & Mauran, Sylvain, 2012. "Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning," Energy, Elsevier, vol. 41(1), pages 261-270.
    10. N'Tsoukpoe, Kokouvi Edem & Restuccia, Giovanni & Schmidt, Thomas & Py, Xavier, 2014. "The size of sorbents in low pressure sorption or thermochemical energy storage processes," Energy, Elsevier, vol. 77(C), pages 983-998.
    11. Narayanan, Shankar & Li, Xiansen & Yang, Sungwoo & Kim, Hyunho & Umans, Ari & McKay, Ian S. & Wang, Evelyn N., 2015. "Thermal battery for portable climate control," Applied Energy, Elsevier, vol. 149(C), pages 104-116.
    12. Jegadheeswaran, S. & Pohekar, Sanjay D., 2009. "Performance enhancement in latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2225-2244, December.
    13. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
    14. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    15. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. AL-Dadah, Raya & Mahmoud, Saad & Elsayed, Eman & Youssef, Peter & Al-Mousawi, Fadhel, 2020. "Metal-organic framework materials for adsorption heat pumps," Energy, Elsevier, vol. 190(C).
    2. Mitra, Sourav & Thu, Kyaw & Saha, Bidyut Baran & Dutta, Pradip, 2017. "Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system," Applied Energy, Elsevier, vol. 206(C), pages 507-518.
    3. Chao, Jingwei & Xu, Jiaxing & Xiang, Shizhao & Bai, Zhaoyuan & Yan, Taisen & Wang, Pengfei & Wang, Ruzhu & Li, Tingxian, 2023. "High energy-density and power-density cold storage enabled by sorption thermal battery based on liquid-gas phase change process," Applied Energy, Elsevier, vol. 334(C).
    4. Palomba, Valeria & Wittstadt, Ursula & Bonanno, Antonino & Tanne, Mirko & Harborth, Niels & Vasta, Salvatore, 2019. "Components and design guidelines for solar cooling systems: The experience of ZEOSOL," Renewable Energy, Elsevier, vol. 141(C), pages 678-692.
    5. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    6. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W. & Lu, Y.J., 2017. "Analysis on innovative modular sorption and resorption thermal cell for cold and heat cogeneration," Applied Energy, Elsevier, vol. 204(C), pages 767-779.
    7. Chen, Shuxian & Dai, Xiaohu & Yang, Donghai & Dai, Lingling & Hua, Yu, 2023. "Enhancing PHA production through metal-organic frameworks: Mechanisms involving superproton transport and bacterial metabolic pathways," Applied Energy, Elsevier, vol. 348(C).
    8. Li, Ang & Wang, Jingjing & Dong, Cheng & Dong, Wenjun & Atinafu, Dimberu G. & Chen, Xiao & Gao, Hongyi & Wang, Ge, 2018. "Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity," Applied Energy, Elsevier, vol. 217(C), pages 369-376.
    9. Yingjie Zhou & Qibin Li & Qiang Wang, 2019. "Energy Storage Analysis of UIO-66 and Water Mixed Nanofluids: An Experimental and Theoretical Study," Energies, MDPI, vol. 12(13), pages 1-9, June.
    10. Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    2. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    3. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1314-1331.
    4. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    5. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    6. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    7. Flegkas, S. & Birkelbach, F. & Winter, F. & Freiberger, N. & Werner, A., 2018. "Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations," Energy, Elsevier, vol. 143(C), pages 615-623.
    8. Li, Gang & Zheng, Xuefei, 2016. "Thermal energy storage system integration forms for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 736-757.
    9. Pizzolato, Alberto & Sharma, Ashesh & Maute, Kurt & Sciacovelli, Adriano & Verda, Vittorio, 2017. "Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization," Applied Energy, Elsevier, vol. 208(C), pages 210-227.
    10. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    11. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    12. Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
    13. Henninger, Stefan K. & Ernst, Sebastian-Johannes & Gordeeva, Larisa & Bendix, Phillip & Fröhlich, Dominik & Grekova, Alexandra D. & Bonaccorsi, Lucio & Aristov, Yuri & Jaenchen, Jochen, 2017. "New materials for adsorption heat transformation and storage," Renewable Energy, Elsevier, vol. 110(C), pages 59-68.
    14. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    15. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    16. Li, W.Q. & Qu, Z.G. & Zhang, B.L. & Zhao, K. & Tao, W.Q., 2013. "Thermal behavior of porous stainless-steel fiber felt saturated with phase change material," Energy, Elsevier, vol. 55(C), pages 846-852.
    17. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    18. Clark, Ruby-Jean & Farid, Mohammed, 2022. "Experimental investigation into cascade thermochemical energy storage system using SrCl2-cement and zeolite-13X materials," Applied Energy, Elsevier, vol. 316(C).
    19. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    20. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:186:y:2017:i:p3:p:509-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.