Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2013.12.017
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Tingxian & Wang, Ruzhu & Kiplagat, Jeremiah K. & Kang, YongTae, 2013. "Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy," Energy, Elsevier, vol. 50(C), pages 454-467.
- Abedin, Ali Haji & Rosen, Marc A., 2012. "Closed and open thermochemical energy storage: Energy- and exergy-based comparisons," Energy, Elsevier, vol. 41(1), pages 83-92.
- Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
- Li, Gang & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Review of cold storage materials for subzero applications," Energy, Elsevier, vol. 51(C), pages 1-17.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
- Clark, Ruby-Jean & Farid, Mohammed, 2022. "Experimental investigation into cascade thermochemical energy storage system using SrCl2-cement and zeolite-13X materials," Applied Energy, Elsevier, vol. 316(C).
- Li, Jiaqi & Tu, Rang & Liu, Mengdan & Wang, Siqi, 2021. "Exergy analysis of a novel multi-stage latent heat storage device based on uniformity of temperature differences fields," Energy, Elsevier, vol. 221(C).
- Rezaei, M. & Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C., 2013. "Performance and cost analysis of phase change materials with different melting temperatures in heating systems," Energy, Elsevier, vol. 53(C), pages 173-178.
- Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
- Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
- Li, T.X. & Xu, J.X. & Yan, T. & Wang, R.Z., 2016. "Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage," Energy, Elsevier, vol. 107(C), pages 347-359.
- Geilfuß, Kristina & Dawoud, Belal, 2020. "Analytical investigation of a zeolite-NaY-water adsorption heat and cold storage and its integration into a steam power process," Energy, Elsevier, vol. 195(C).
- Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
- Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
- Nagel, T. & Shao, H. & Singh, A.K. & Watanabe, N. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2013. "Non-equilibrium thermochemical heat storage in porous media: Part 1 – Conceptual model," Energy, Elsevier, vol. 60(C), pages 254-270.
- Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
- Yan, J. & Zhao, C.Y. & Pan, Z.H., 2017. "The effect of CO2 on Ca(OH)2 and Mg(OH)2 thermochemical heat storage systems," Energy, Elsevier, vol. 124(C), pages 114-123.
- Michel, Benoit & Neveu, Pierre & Mazet, Nathalie, 2014. "Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications," Energy, Elsevier, vol. 72(C), pages 702-716.
- Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
- Li, T.X. & Wang, R.Z. & Yan, T., 2015. "Solid–gas thermochemical sorption thermal battery for solar cooling and heating energy storage and heat transformer," Energy, Elsevier, vol. 84(C), pages 745-758.
- Sharma, Rakesh & Anil Kumar, E., 2017. "Study of ammoniated salts based thermochemical energy storage system with heat up-gradation: A thermodynamic approach," Energy, Elsevier, vol. 141(C), pages 1705-1716.
- Li, Gang, 2015. "Energy and exergy performance assessments for latent heat thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 926-954.
- Shao, H. & Nagel, T. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2013. "Non-equilibrium thermo-chemical heat storage in porous media: Part 2 – A 1D computational model for a calcium hydroxide reaction system," Energy, Elsevier, vol. 60(C), pages 271-282.
- Aydin, Devrim & Utlu, Zafer & Kincay, Olcay, 2015. "Thermal performance analysis of a solar energy sourced latent heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1213-1225.
More about this item
Keywords
Thermal energy storage; Adsorption heat storage; Exergy performance; Fin-coated heat exchanger; Energy storage density; Exergy destruction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:65:y:2014:i:c:p:675-691. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.