IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp223-235.html
   My bibliography  Save this article

R450A and R513A as lower GWP mixtures for high ambient temperature countries: Experimental comparison with R134a

Author

Listed:
  • Makhnatch, Pavel
  • Mota-Babiloni, Adrián
  • López-Belchí, Alejandro
  • Khodabandeh, Rahmatollah

Abstract

In recognition of the impact of the refrigeration sector on climate change, global commitments are achieved to replace hydrofluorocarbon substances with more planet-friendly alternatives. In this regard, countries with high ambient temperatures (HAT) face additional problems in identifying suitable alternatives due to the impact of such temperatures on energy performance in vapor compression systems. This paper presents an experimental analysis using R134a and two lower global warming potential (GWP) mixtures in a small capacity vapor compression refrigeration system for HAT environments. The range of evaporating and condensing conditions was selected to simulate a refrigeration system working at HAT conditions. The experimental operating results show that although R450A values are acceptable, R513A shows better adaptation to the refrigeration system in terms of pressure ratio, discharge temperature, and mass flow rate. Then, attending to experimental energetic results, R450A energy performance (quantified by COP) and cooling capacity are lower than R513A and R134a. TEWI analysis of a small refrigeration unit shows CO2 equivalent emission saving when using R450A in the different condensation conditions. However, taking into account the variation of cooling capacity, R513A system results in the lowest TEWI when normalizing per unit of delivered cooling capacity.

Suggested Citation

  • Makhnatch, Pavel & Mota-Babiloni, Adrián & López-Belchí, Alejandro & Khodabandeh, Rahmatollah, 2019. "R450A and R513A as lower GWP mixtures for high ambient temperature countries: Experimental comparison with R134a," Energy, Elsevier, vol. 166(C), pages 223-235.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:223-235
    DOI: 10.1016/j.energy.2018.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mendoza-Miranda, J.M. & Mota-Babiloni, A. & Ramírez-Minguela, J.J. & Muñoz-Carpio, V.D. & Carrera-Rodríguez, M. & Navarro-Esbrí, J. & Salazar-Hernández, C., 2016. "Comparative evaluation of R1234yf, R1234ze(E) and R450A as alternatives to R134a in a variable speed reciprocating compressor," Energy, Elsevier, vol. 114(C), pages 753-766.
    2. Aprea, Ciro & Maiorino, Angelo, 2011. "An experimental investigation of the global environmental impact of the R22 retrofit with R422D," Energy, Elsevier, vol. 36(2), pages 1161-1170.
    3. Mota-Babiloni, Adrián & Navarro-Esbrí, Joaquín & Barragán-Cervera, Ángel & Molés, Francisco & Peris, Bernardo, 2015. "Drop-in analysis of an internal heat exchanger in a vapour compression system using R1234ze(E) and R450A as alternatives for R134a," Energy, Elsevier, vol. 90(P2), pages 1636-1644.
    4. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.
    5. Eyerer, Sebastian & Eyerer, Peter & Eicheldinger, Markus & Tübke, Beatrice & Wieland, Christoph & Spliethoff, Hartmut, 2018. "Theoretical analysis and experimental investigation of material compatibility between refrigerants and polymers," Energy, Elsevier, vol. 163(C), pages 782-799.
    6. Devecioğlu, Atilla G. & Oruç, Vedat, 2018. "Improvement on the energy performance of a refrigeration system adapting a plate-type heat exchanger and low-GWP refrigerants as alternatives to R134a," Energy, Elsevier, vol. 155(C), pages 105-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Pérez-García, V. & Mota-Babiloni, A. & Navarro-Esbrí, J., 2019. "Influence of operational modes of the internal heat exchanger in an experimental installation using R-450A and R-513A as replacement alternatives for R-134a," Energy, Elsevier, vol. 189(C).
    3. Daniarta, Sindu & Imre, Attila R. & Kolasiński, Piotr, 2022. "Thermodynamic efficiency of subcritical and transcritical power cycles utilizing selected ACZ working fluids," Energy, Elsevier, vol. 254(PA).
    4. Saedpanah, Ehsan & Pasdarshahri, Hadi, 2021. "Performance assessment of hybrid desiccant air conditioning systems: A dynamic approach towards achieving optimum 3E solution across the lifespan," Energy, Elsevier, vol. 234(C).
    5. Piyanut Saengsikhiao & Juntakan Taweekun & Kittinan Maliwan & Somchai Sae-ung & Thanansak Theppaya, 2020. "Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-19, March.
    6. Mubarak Alawadhi & Patrick E. Phelan, 2022. "Review of Residential Air Conditioning Systems Operating under High Ambient Temperatures," Energies, MDPI, vol. 15(8), pages 1-46, April.
    7. Mota-Babiloni, Adrián & Barbosa, Jader R. & Makhnatch, Pavel & Lozano, Jaime A., 2020. "Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    8. Matsuura, Riku & Watanabe, Kosuke & Yamauchi, Yuji & Sato, Haruka & Chen, Li-Jen & Ohmura, Ryo, 2021. "Thermodynamic analysis of hydrate-based refrigeration cycle," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez-García, V. & Mota-Babiloni, A. & Navarro-Esbrí, J., 2019. "Influence of operational modes of the internal heat exchanger in an experimental installation using R-450A and R-513A as replacement alternatives for R-134a," Energy, Elsevier, vol. 189(C).
    2. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    3. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.
    5. Devecioğlu, Atilla G. & Oruç, Vedat, 2018. "Improvement on the energy performance of a refrigeration system adapting a plate-type heat exchanger and low-GWP refrigerants as alternatives to R134a," Energy, Elsevier, vol. 155(C), pages 105-116.
    6. Bo Shen & Moonis R. Ally, 2020. "Energy and Exergy Analysis of Low-Global Warming Potential Refrigerants as Replacement for R410A in Two-Speed Heat Pumps for Cold Climates," Energies, MDPI, vol. 13(21), pages 1-18, October.
    7. Mota-Babiloni, Adrián & Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Molés, Francisco & Amat-Albuixech, Marta & Barragán-Cervera, Ángel, 2018. "Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential," Energy, Elsevier, vol. 165(PB), pages 1248-1258.
    8. Piotr Życzkowski & Marek Borowski & Rafał Łuczak & Zbigniew Kuczera & Bogusław Ptaszyński, 2020. "Functional Equations for Calculating the Properties of Low-GWP R1234ze(E) Refrigerant," Energies, MDPI, vol. 13(12), pages 1-18, June.
    9. Xin, Liyong & Liu, Chao & Tan, Luxi & Xu, Xiaoxiao & Li, Qibin & Huo, Erguang & Sun, Kuan, 2021. "Thermal stability and pyrolysis products of HFO-1234yf as an environment-friendly working fluid for Organic Rankine Cycle," Energy, Elsevier, vol. 228(C).
    10. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    11. Kumma, Nagarjuna & Kruthiventi, S.S Harish, 2024. "Current status of refrigerants used in domestic applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Wu, Xi & Yang, Zhao & Wang, Xiaoming & Lin, Yulong, 2013. "Experimental and theoretical study on the influence of temperature and humidity on the flammability limits of ethylene (R1150)," Energy, Elsevier, vol. 52(C), pages 185-191.
    13. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    14. Xin, Liyong & Yu, Wei & Liu, Chao & Liu, Lang & Wang, Shukun & Li, Xiaoxiao & Liu, Yu, 2023. "Thermal stability of a mixed working fluid (R513A) for organic Rankine cycle," Energy, Elsevier, vol. 263(PF).
    15. Lim, Junkyu & Mok, Junghoon & Seo, Yongwon, 2024. "Investigating the significance of structural transition in chlorodifluoromethane (R22) + N2 hydrates for hydrate-based greenhouse gas separation," Energy, Elsevier, vol. 306(C).
    16. Aprea, Ciro & Maiorino, Angelo & Mastrullo, Rita, 2011. "Change in energy performance as a result of a R422D retrofit: An experimental analysis for a vapor compression refrigeration plant for a walk-in cooler," Applied Energy, Elsevier, vol. 88(12), pages 4742-4748.
    17. Piyanut Saengsikhiao & Juntakan Taweekun & Kittinan Maliwan & Somchai Sae-ung & Thanansak Theppaya, 2020. "Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-19, March.
    18. Dennis Roskosch & Valerius Venzik & Burak Atakan, 2019. "Fluid Retrofit for Existing Vapor Compression Refrigeration Systems and Heat Pumps: Evaluation of Different Models," Energies, MDPI, vol. 12(12), pages 1-12, June.
    19. Rami Mansouri & Baby-Jean Robert Mungyeko Bisulandu & Adrian Ilinca, 2023. "Assessing Energy Performance and Environmental Impact of Low GWP Vapor Compression Chilled Water Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    20. Eyerer, Sebastian & Dawo, Fabian & Kaindl, Johannes & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa," Applied Energy, Elsevier, vol. 240(C), pages 946-963.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:223-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.