IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3052-d370896.html
   My bibliography  Save this article

Functional Equations for Calculating the Properties of Low-GWP R1234ze(E) Refrigerant

Author

Listed:
  • Piotr Życzkowski

    (Department of Environmental Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Marek Borowski

    (Department of Environmental Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Rafał Łuczak

    (Department of Environmental Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Zbigniew Kuczera

    (Department of Environmental Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Bogusław Ptaszyński

    (Department of Environmental Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

Legal requirements for the use of refrigerants increasingly restrict the use of high-global warming potential (GWP) refrigerants. As a result, there is a growing interest in natural refrigerants and in those belonging to the hydrofluoroolefins (HFO) class, which can be used on their own or in mixtures. One of them is the R1234ze(E) refrigerant, an alternative to the R134a refrigerant as well as being a component of numerous mixtures. The knowledge of thermodynamic and transport properties of refrigerants is required for the analysis and calculation of refrigeration cycles in refrigeration, air conditioning, or heating systems. The paper presents analytical equations for calculating the properties of the R1234ze(E) refrigerant in the state of saturation and in the subcooled liquid and superheated vapour regions that do not require numerical calculations and are characterised by small deviations. The Levenberg–Marquardt algorithm—one of the methods for non-linear least squares estimation—was used to develop them. A total of 26 equations were formulated. The formulated equations were statistically verified by determining absolute and relative deviations between the values obtained from CoolProp software and calculated values. The maximum relative deviation was not higher than 1% in any of them.

Suggested Citation

  • Piotr Życzkowski & Marek Borowski & Rafał Łuczak & Zbigniew Kuczera & Bogusław Ptaszyński, 2020. "Functional Equations for Calculating the Properties of Low-GWP R1234ze(E) Refrigerant," Energies, MDPI, vol. 13(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3052-:d:370896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3052/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3052/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mota-Babiloni, Adrián & Navarro-Esbrí, Joaquín & Barragán-Cervera, Ángel & Molés, Francisco & Peris, Bernardo, 2015. "Drop-in analysis of an internal heat exchanger in a vapour compression system using R1234ze(E) and R450A as alternatives for R134a," Energy, Elsevier, vol. 90(P2), pages 1636-1644.
    2. Blaifi, Sid-ali & Moulahoum, Samir & Taghezouit, Bilal & Saim, Abdelhakim, 2019. "An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 745-760.
    3. Devecioğlu, Atilla G. & Oruç, Vedat, 2018. "Improvement on the energy performance of a refrigeration system adapting a plate-type heat exchanger and low-GWP refrigerants as alternatives to R134a," Energy, Elsevier, vol. 155(C), pages 105-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dario Méndez-Méndez & Vicente Pérez-García & Juan M. Belman-Flores & José M. Riesco-Ávila & Juan M. Barroso-Maldonado, 2022. "Internal Heat Exchanger Influence in Operational Cost and Environmental Impact of an Experimental Installation Using Low GWP Refrigerant for HVAC Conditions," Sustainability, MDPI, vol. 14(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makhnatch, Pavel & Mota-Babiloni, Adrián & López-Belchí, Alejandro & Khodabandeh, Rahmatollah, 2019. "R450A and R513A as lower GWP mixtures for high ambient temperature countries: Experimental comparison with R134a," Energy, Elsevier, vol. 166(C), pages 223-235.
    2. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    3. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    4. HaiYan Jiang & Qinghui Song & Kuidong Gao & QingJun Song & XieGuang Zhao, 2020. "Rule-based expert system to assess caving output ratio in top coal caving," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    5. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Mariana Durango-Flórez & Daniel González-Montoya & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja, 2022. "PV Array Reconfiguration Based on Genetic Algorithm for Maximum Power Extraction and Energy Impact Analysis," Sustainability, MDPI, vol. 14(7), pages 1-14, March.
    7. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.
    8. Devecioğlu, Atilla G. & Oruç, Vedat, 2018. "Improvement on the energy performance of a refrigeration system adapting a plate-type heat exchanger and low-GWP refrigerants as alternatives to R134a," Energy, Elsevier, vol. 155(C), pages 105-116.
    9. Han, Youhua & Liu, Yang & Lu, Shixiang & Basalike, Pie & Zhang, Jili, 2021. "Electrical performance and power prediction of a roll-bond photovoltaic thermal array under dewing and frosting conditions," Energy, Elsevier, vol. 237(C).
    10. Li, Guorong & Zhang, Yunpeng & Zhou, Hai & Wu, Ji & Sun, Shumin & You, Daning & Zhang, Yuanpeng, 2024. "Novel reference condition independent method for estimating performance for PV modules based on double-diode model," Renewable Energy, Elsevier, vol. 226(C).
    11. Bo Shen & Moonis R. Ally, 2020. "Energy and Exergy Analysis of Low-Global Warming Potential Refrigerants as Replacement for R410A in Two-Speed Heat Pumps for Cold Climates," Energies, MDPI, vol. 13(21), pages 1-18, October.
    12. Bilal Taghezouit & Fouzi Harrou & Cherif Larbes & Ying Sun & Smail Semaoui & Amar Hadj Arab & Salim Bouchakour, 2022. "Intelligent Monitoring of Photovoltaic Systems via Simplicial Empirical Models and Performance Loss Rate Evaluation under LabVIEW: A Case Study," Energies, MDPI, vol. 15(21), pages 1-30, October.
    13. Mota-Babiloni, Adrián & Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Molés, Francisco & Amat-Albuixech, Marta & Barragán-Cervera, Ángel, 2018. "Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential," Energy, Elsevier, vol. 165(PB), pages 1248-1258.
    14. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    15. Zhai, Rui & Yang, Zhao & Chen, Yubo & Feng, Biao & Lv, Zijian & Zhao, Wenzhong, 2019. "Theoretical and experimental studies on the combustion mechanism of Trans-1, 3, 3, 3-tetrafluoroprop-1-ene," Energy, Elsevier, vol. 189(C).
    16. Pérez-García, V. & Mota-Babiloni, A. & Navarro-Esbrí, J., 2019. "Influence of operational modes of the internal heat exchanger in an experimental installation using R-450A and R-513A as replacement alternatives for R-134a," Energy, Elsevier, vol. 189(C).
    17. Mendoza-Miranda, J.M. & Mota-Babiloni, A. & Ramírez-Minguela, J.J. & Muñoz-Carpio, V.D. & Carrera-Rodríguez, M. & Navarro-Esbrí, J. & Salazar-Hernández, C., 2016. "Comparative evaluation of R1234yf, R1234ze(E) and R450A as alternatives to R134a in a variable speed reciprocating compressor," Energy, Elsevier, vol. 114(C), pages 753-766.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3052-:d:370896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.