IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i2p1161-1170.html
   My bibliography  Save this article

An experimental investigation of the global environmental impact of the R22 retrofit with R422D

Author

Listed:
  • Aprea, Ciro
  • Maiorino, Angelo

Abstract

In recent years a new refrigerant, R422D, has been introduced as substitute of R22 for refrigeration systems. This new fluid is an easy-to-use, non-ozone-depleting HFC refrigerant and, differently from its predecessor (R407C), it is compatible with mineral oil. However, R422D has a very high GWP, and it tends to worsen the efficiency of retrofitted R22 systems. Consequently, even if R422D respects the limits of Montreal Protocol, its global environmental impact could be high. In this paper, we report an experimental analysis in terms of TEWI aimed to identify the global environmental impact of R22 systems retrofitted with R422D. For this purpose, we considered a direct expansion refrigerator for commercial applications and we investigated energy consumption with the temperature of the cold reservoir set to −5, 0, 5, 10°C. The experimental investigation confirmed that the system, when retrofitted with R422D, leads to an increase of TEWI. Therefore an optimization analysis aimed to eco-friendly scenarios was performed.

Suggested Citation

  • Aprea, Ciro & Maiorino, Angelo, 2011. "An experimental investigation of the global environmental impact of the R22 retrofit with R422D," Energy, Elsevier, vol. 36(2), pages 1161-1170.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1161-1170
    DOI: 10.1016/j.energy.2010.11.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210006778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.11.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Psomopoulos, C.S. & Skoula, I. & Karras, C. & Chatzimpiros, A. & Chionidis, M., 2010. "Electricity savings and CO2 emissions reduction in buildings sector: How important the network losses are in the calculation?," Energy, Elsevier, vol. 35(1), pages 485-490.
    2. Quadrelli, Roberta & Peterson, Sierra, 2007. "The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion," Energy Policy, Elsevier, vol. 35(11), pages 5938-5952, November.
    3. Malla, Sunil, 2009. "CO2 emissions from electricity generation in seven Asia-Pacific and North American countries: A decomposition analysis," Energy Policy, Elsevier, vol. 37(1), pages 1-9, January.
    4. Weber, Céline & Koyama, Michihisa & Kraines, Steven, 2006. "CO2-emissions reduction potential and costs of a decentralized energy system for providing electricity, cooling and heating in an office-building in Tokyo," Energy, Elsevier, vol. 31(14), pages 3041-3061.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aprea, C. & Greco, A. & Maiorino, A., 2012. "An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2," Energy, Elsevier, vol. 45(1), pages 753-761.
    2. Wu, Xi & Yang, Zhao & Wang, Xiaoming & Lin, Yulong, 2013. "Experimental and theoretical study on the influence of temperature and humidity on the flammability limits of ethylene (R1150)," Energy, Elsevier, vol. 52(C), pages 185-191.
    3. Makhnatch, Pavel & Mota-Babiloni, Adrián & López-Belchí, Alejandro & Khodabandeh, Rahmatollah, 2019. "R450A and R513A as lower GWP mixtures for high ambient temperature countries: Experimental comparison with R134a," Energy, Elsevier, vol. 166(C), pages 223-235.
    4. Aprea, Ciro & Maiorino, Angelo & Mastrullo, Rita, 2011. "Change in energy performance as a result of a R422D retrofit: An experimental analysis for a vapor compression refrigeration plant for a walk-in cooler," Applied Energy, Elsevier, vol. 88(12), pages 4742-4748.
    5. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    6. Piyanut Saengsikhiao & Juntakan Taweekun & Kittinan Maliwan & Somchai Sae-ung & Thanansak Theppaya, 2020. "Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-19, March.
    7. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    8. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aprea, C. & Greco, A. & Maiorino, A., 2012. "An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2," Energy, Elsevier, vol. 45(1), pages 753-761.
    2. Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alexander & Escrivá-Escrivá, Guillermo, 2012. "Economic and environmental evaluation of customers' flexibility participating in operation markets: Application to the meat industry," Energy, Elsevier, vol. 41(1), pages 368-379.
    3. K. Narayanan & Santosh K. Sahu, 2014. "Energy Consumption Response to Climate Change: Policy Options for India," IIM Kozhikode Society & Management Review, , vol. 3(2), pages 123-133, July.
    4. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    5. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    6. Bermudez, Bladimir Carrillo & Santos Branco, Danyelle Karine & Trujillo, Juan Carlos & de Lima, Joao Eustaquio, 2015. "Deforestation and Infant Health: Evidence from an Environmental Conservation Policy in Brazil," 2015 Conference, August 9-14, 2015, Milan, Italy 229064, International Association of Agricultural Economists.
    7. Wang, Yanxiang & Ali Almazrooei, Shaikha & Kapsalyamova, Zhanna & Diabat, Ali & Tsai, I-Tsung, 2016. "Utility subsidy reform in Abu Dhabi: A review and a Computable General Equilibrium analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1352-1362.
    8. Liou, Hwa Meei, 2011. "A comparison of the legislative framework and policies in Taiwan's Four GHG reduction acts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1723-1747, May.
    9. Jan Wrana & Wojciech Struzik & Bartłomiej Kwiatkowski & Piotr Gleń, 2022. "Release of Energy from Groundwater/with Reduction in CO 2 Emissions of More Than 50% from HVAC in the Extension and Revitalization of the Former Palace of the Sobieski Family in Lublin," Energies, MDPI, vol. 15(18), pages 1-11, September.
    10. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    11. Liu, Pengqiang & Li, Xin & Chang, Hsu-Ling & Su, Nan, 2024. "Natural resources Kuznets curve: The role of mineral resources, urbanization, and digitalization in BRICS economies," Resources Policy, Elsevier, vol. 90(C).
    12. Yan, Qingyou & Zhang, Qian & Zou, Xin, 2016. "Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000–2020," Energy, Elsevier, vol. 112(C), pages 788-794.
    13. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    14. Harmsen, Robert & Crijns-Graus, Wina, 2021. "Unhiding the role of CHP in power & heat sector decomposition analyses," Energy Policy, Elsevier, vol. 152(C).
    15. Chung, Whan-Sam & Tohno, Susumu & Choi, Ki-Hong, 2011. "Socio-technological impact analysis using an energy IO approach to GHG emissions issues in South Korea," Applied Energy, Elsevier, vol. 88(11), pages 3747-3758.
    16. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
    17. Ali, Ghaffar & Pumijumnong, Nathsuda & Cui, Shenghui, 2018. "Valuation and validation of carbon sources and sinks through land cover/use change analysis: The case of Bangkok metropolitan area," Land Use Policy, Elsevier, vol. 70(C), pages 471-478.
    18. Wei Sun & Ming Meng & Yujun He & Hong Chang, 2016. "CO 2 Emissions from China’s Power Industry: Scenarios and Policies for 13th Five-Year Plan," Energies, MDPI, vol. 9(10), pages 1-16, October.
    19. Fidelis. I. Abam & Ogheneruona E. Diemuodeke & Ekwe. B. Ekwe & Mohammed Alghassab & Olusegun D. Samuel & Zafar A. Khan & Muhammad Imran & Muhammad Farooq, 2020. "Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing," Energies, MDPI, vol. 13(22), pages 1-27, November.
    20. Meiri Triani & Handrea Bernando Tambunan & Kania Dewi & Addina Shafiyya Ediansjah, 2023. "Review on Greenhouse Gases Emission in the Association of Southeast Asian Nations (ASEAN) Countries," Energies, MDPI, vol. 16(9), pages 1-17, May.

    More about this item

    Keywords

    Experimentation; R22; R422D; Retrofitting; Substitute; TEWI;
    All these keywords.

    JEL classification:

    • R22 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Other Demand

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1161-1170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.