IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219320432.html
   My bibliography  Save this article

Influence of operational modes of the internal heat exchanger in an experimental installation using R-450A and R-513A as replacement alternatives for R-134a

Author

Listed:
  • Pérez-García, V.
  • Mota-Babiloni, A.
  • Navarro-Esbrí, J.

Abstract

This paper presents a first and second law of thermodynamics study using experimental data from a medium capacity refrigeration system using R-450A, R-513A and R-134a as working fluids and an internal heat exchanger (IHX) operating in three different modes: disabled (Off), activated at 38% thermal effectiveness (Middle), and activated at 78% thermal effectiveness, which is the maximum value by design (ON). When the IHX is in the Middle mode, R-513A showed to be the best option and its coefficient of performance (COP) overcomes that of R-450A and R-134a. On the other hand, for temperatures above of −7.5 °C, both R-450A and R-134a reached the highest COP when the ON and Off modes were set, respectively.Regarding the second law study, for the Off and Middle mode, the largest exergy destruction happens in the compressor for the three refrigerants. The influence of the IHX can be observed directly in the increase of the global exergetic efficiency which passes from being 8.7% in Middle mode to 18.3% for the ON mode. Additionally, a reduction of exergy destruction ratio is seen from the Middle mode, 10.6%–22.2% in the ON mode.

Suggested Citation

  • Pérez-García, V. & Mota-Babiloni, A. & Navarro-Esbrí, J., 2019. "Influence of operational modes of the internal heat exchanger in an experimental installation using R-450A and R-513A as replacement alternatives for R-134a," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219320432
    DOI: 10.1016/j.energy.2019.116348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219320432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Said, S.A.M. & Ismail, B., 1994. "Exergetic assessment of the coolants HCFC123, HFC134a, CFC11, and CFC12," Energy, Elsevier, vol. 19(11), pages 1181-1186.
    2. Mendoza-Miranda, J.M. & Mota-Babiloni, A. & Ramírez-Minguela, J.J. & Muñoz-Carpio, V.D. & Carrera-Rodríguez, M. & Navarro-Esbrí, J. & Salazar-Hernández, C., 2016. "Comparative evaluation of R1234yf, R1234ze(E) and R450A as alternatives to R134a in a variable speed reciprocating compressor," Energy, Elsevier, vol. 114(C), pages 753-766.
    3. Makhnatch, Pavel & Mota-Babiloni, Adrián & López-Belchí, Alejandro & Khodabandeh, Rahmatollah, 2019. "R450A and R513A as lower GWP mixtures for high ambient temperature countries: Experimental comparison with R134a," Energy, Elsevier, vol. 166(C), pages 223-235.
    4. Belman-Flores, J.M. & Rangel-Hernández, V.H. & Usón, S. & Rubio-Maya, C., 2017. "Energy and exergy analysis of R1234yf as drop-in replacement for R134a in a domestic refrigeration system," Energy, Elsevier, vol. 132(C), pages 116-125.
    5. Ahamed, J.U. & Saidur, R. & Masjuki, H.H., 2011. "A review on exergy analysis of vapor compression refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1593-1600, April.
    6. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.
    7. Devecioğlu, Atilla G. & Oruç, Vedat, 2018. "Improvement on the energy performance of a refrigeration system adapting a plate-type heat exchanger and low-GWP refrigerants as alternatives to R134a," Energy, Elsevier, vol. 155(C), pages 105-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.
    3. Makhnatch, Pavel & Mota-Babiloni, Adrián & López-Belchí, Alejandro & Khodabandeh, Rahmatollah, 2019. "R450A and R513A as lower GWP mixtures for high ambient temperature countries: Experimental comparison with R134a," Energy, Elsevier, vol. 166(C), pages 223-235.
    4. Mubarak Alawadhi & Patrick E. Phelan, 2022. "Review of Residential Air Conditioning Systems Operating under High Ambient Temperatures," Energies, MDPI, vol. 15(8), pages 1-46, April.
    5. Bartosz Gil & Jacek Kasperski, 2018. "Efficiency Evaluation of the Ejector Cooling Cycle using a New Generation of HFO/HCFO Refrigerant as a R134a Replacement," Energies, MDPI, vol. 11(8), pages 1-17, August.
    6. Belman-Flores, J.M. & Rangel-Hernández, V.H. & Usón, S. & Rubio-Maya, C., 2017. "Energy and exergy analysis of R1234yf as drop-in replacement for R134a in a domestic refrigeration system," Energy, Elsevier, vol. 132(C), pages 116-125.
    7. Bo Shen & Moonis R. Ally, 2020. "Energy and Exergy Analysis of Low-Global Warming Potential Refrigerants as Replacement for R410A in Two-Speed Heat Pumps for Cold Climates," Energies, MDPI, vol. 13(21), pages 1-18, October.
    8. Ammar M. Bahman & Eckhard A. Groll, 2020. "Application of Second-Law Analysis for the Environmental Control Unit at High Ambient Temperature," Energies, MDPI, vol. 13(12), pages 1-20, June.
    9. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    10. Francisco Amaral & Alex Santos & Ewerton Calixto & Fernando Pessoa & Delano Santana, 2020. "Exergetic Evaluation of an Ethylene Refrigeration Cycle," Energies, MDPI, vol. 13(14), pages 1-21, July.
    11. Murthy, Anarghya Ananda & Krishan, Gopal & Shenoy, Praveen & Patil, Ishwaragouda S, 2024. "Theoretical, CFD modelling and experimental investigation of a four-intersecting-vane rotary expander," Applied Energy, Elsevier, vol. 353(PB).
    12. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    13. Romero Gómez, J. & Ferreiro Garcia, R. & De Miguel Catoira, A. & Romero Gómez, M., 2013. "Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 74-82.
    14. BoroumandJazi, G. & Rismanchi, B. & Saidur, R., 2013. "A review on exergy analysis of industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 198-203.
    15. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
    16. Rami Mansouri & Baby-Jean Robert Mungyeko Bisulandu & Adrian Ilinca, 2023. "Assessing Energy Performance and Environmental Impact of Low GWP Vapor Compression Chilled Water Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    17. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari & Mousavi, Seyed Ali, 2019. "Evaluation of an optimal integrated design multi-fuel multi-product electrical power plant by energy and exergy analyses," Energy, Elsevier, vol. 169(C), pages 61-78.
    18. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2021. "Energy and exergy analysis of a Linde-Hampson refrigeration system using R170, R41 and R1132a as low-GWP refrigerant blend components to replace R23," Energy, Elsevier, vol. 229(C).
    19. Devecioğlu, Atilla G. & Oruç, Vedat, 2018. "Improvement on the energy performance of a refrigeration system adapting a plate-type heat exchanger and low-GWP refrigerants as alternatives to R134a," Energy, Elsevier, vol. 155(C), pages 105-116.
    20. Sun, Fangtian & Chen, Xu & Fu, Lin & Zhang, Shigang, 2018. "Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger," Energy, Elsevier, vol. 164(C), pages 408-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219320432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.