IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2880-d793998.html
   My bibliography  Save this article

Review of Residential Air Conditioning Systems Operating under High Ambient Temperatures

Author

Listed:
  • Mubarak Alawadhi

    (School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287-6106, USA)

  • Patrick E. Phelan

    (School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287-6106, USA)

Abstract

This article provides an overview of residential vapor-compression air conditioners operating under high ambient temperatures (HAT). For the purpose of this article, a minimum temperature criterion, 40 °C and above, was developed to evaluate studies that were conducted at HAT. Several HAT organizations and projects were launched with the purpose of assessing the performance of low-GWP (GWP = global warming potential) refrigerants when operating under HAT and accelerating the transition to such refrigerants. Previous studies of air conditioner improvements (i.e., for condensers, evaporators, compressors, and refrigerants) were discussed under HAT conditions. This article also explores the challenges, the possible design modifications, and several limitations of air conditioners operating under HAT. Condenser improvements showed an 18 to 50% higher coefficient of performance ( COP ) and an 8 to 30% higher cooling capacity. Only one study was found for evaporator enhancement under HAT which improved the COP by ~7% and cooling capacity by ~10%. Experimental compressor improvements achieved 2 to 17 °C lower discharge temperature and up to 15% higher cooling capacity, whereas the COP ranged from −4% to +3% of the baseline values. Under HAT conditions, several A2L refrigerants exhibited an attractive performance compared to R-410A while none outperformed R-22 in terms of both cooling capacity and COP . Considering R-22 alternatives, all A1 refrigerants exhibited lower COP , A2L refrigerants achieved comparable COP , and A3 refrigerants reached higher COP .

Suggested Citation

  • Mubarak Alawadhi & Patrick E. Phelan, 2022. "Review of Residential Air Conditioning Systems Operating under High Ambient Temperatures," Energies, MDPI, vol. 15(8), pages 1-46, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2880-:d:793998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Makhnatch, Pavel & Mota-Babiloni, Adrián & López-Belchí, Alejandro & Khodabandeh, Rahmatollah, 2019. "R450A and R513A as lower GWP mixtures for high ambient temperature countries: Experimental comparison with R134a," Energy, Elsevier, vol. 166(C), pages 223-235.
    2. Lucas W. Davis & Alan Fuchs & Paul Gertler, 2014. "Cash for Coolers: Evaluating a Large-Scale Appliance Replacement Program in Mexico," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 207-238, November.
    3. Ammar M. Bahman & Eckhard A. Groll, 2020. "Application of Second-Law Analysis for the Environmental Control Unit at High Ambient Temperature," Energies, MDPI, vol. 13(12), pages 1-20, June.
    4. A. M. Vicedo-Cabrera & N. Scovronick & F. Sera & D. Royé & R. Schneider & A. Tobias & C. Astrom & Y. Guo & Y. Honda & D. M. Hondula & R. Abrutzky & S. Tong & M. de Sousa Zanotti Stagliorio Coelho & P., 2021. "The burden of heat-related mortality attributable to recent human-induced climate change," Nature Climate Change, Nature, vol. 11(6), pages 492-500, June.
    5. Ahamed, J.U. & Saidur, R. & Masjuki, H.H., 2011. "A review on exergy analysis of vapor compression refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1593-1600, April.
    6. Turki Alajmi & Patrick Phelan, 2020. "Modeling and Forecasting End-Use Energy Consumption for Residential Buildings in Kuwait Using a Bottom-Up Approach," Energies, MDPI, vol. 13(8), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anatolijs Borodinecs & Kristina Lebedeva & Natalja Sidenko & Aleksejs Prozuments, 2022. "Enhancement of Chiller Performance by Water Distribution on the Adiabatic Cooling Pad’s Mesh Surface," Clean Technol., MDPI, vol. 4(3), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Pérez-García, V. & Mota-Babiloni, A. & Navarro-Esbrí, J., 2019. "Influence of operational modes of the internal heat exchanger in an experimental installation using R-450A and R-513A as replacement alternatives for R-134a," Energy, Elsevier, vol. 189(C).
    3. Martina S. Ragettli & Apolline Saucy & Benjamin Flückiger & Danielle Vienneau & Kees de Hoogh & Ana M. Vicedo-Cabrera & Christian Schindler & Martin Röösli, 2023. "Explorative Assessment of the Temperature–Mortality Association to Support Health-Based Heat-Warning Thresholds: A National Case-Crossover Study in Switzerland," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    4. Lou, Jiehong & Shen, Xingchi & Niemeier, Deb, 2020. "Are stay-at-home orders more difficult to follow for low-income groups?," Journal of Transport Geography, Elsevier, vol. 89(C).
    5. Hemin Sun & Valentina Krysanova & Yu Gong & Miaoni Gao & Simon Treu & Ziyan Chen & Tong Jiang, 2024. "The recent trends of runoff in China attributable to climate change," Climatic Change, Springer, vol. 177(11), pages 1-19, November.
    6. Andor, Mark A. & Gerster, Andreas & Peters, Jörg & Schmidt, Christoph M., 2020. "Social Norms and Energy Conservation Beyond the US," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    7. Belay, Dagim G. & Jensen, Jørgen D., 2020. "‘The scarlet letters’: Information disclosure and self-regulation: Evidence from antibiotic use in Denmark," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    8. Yuan, Zhengrong & Ding, Hai & Yu, Qiuzuo, 2024. "High temperature, bargaining power and within-firm wage inequality: Evidence from China," Economic Modelling, Elsevier, vol. 135(C).
    9. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    10. Wan Ting Katty Huang & Pierre Masselot & Elie Bou-Zeid & Simone Fatichi & Athanasios Paschalis & Ting Sun & Antonio Gasparrini & Gabriele Manoli, 2023. "Economic valuation of temperature-related mortality attributed to urban heat islands in European cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Yeqiang Zhang & Biao Lei & Zubair Masaud & Muhammad Imran & Yuting Wu & Jinping Liu & Xiaoding Qin & Hafiz Ali Muhammad, 2020. "Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction," Energies, MDPI, vol. 13(22), pages 1-15, November.
    12. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    13. Francisco Amaral & Alex Santos & Ewerton Calixto & Fernando Pessoa & Delano Santana, 2020. "Exergetic Evaluation of an Ethylene Refrigeration Cycle," Energies, MDPI, vol. 13(14), pages 1-21, July.
    14. Murthy, Anarghya Ananda & Krishan, Gopal & Shenoy, Praveen & Patil, Ishwaragouda S, 2024. "Theoretical, CFD modelling and experimental investigation of a four-intersecting-vane rotary expander," Applied Energy, Elsevier, vol. 353(PB).
    15. Fiona Burlig & Christopher Knittel & David Rapson & Mar Reguant & Catherine Wolfram, 2020. "Machine Learning from Schools about Energy Efficiency," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(6), pages 1181-1217.
    16. Mathias Reynaert & James M. Sallee, 2016. "Corrective Policy and Goodhart's Law: The Case of Carbon Emissions from Automobiles," NBER Working Papers 22911, National Bureau of Economic Research, Inc.
    17. Christopher Hansman & Jonas Hjort & Gianmarco León, 2015. "Firms' Response and Unintended Health Consequences of Industrial Regulations," Working Papers 809, Barcelona School of Economics.
    18. Francisco Costa & François Gerard, 2021. "Hysteresis and the Welfare Effect of Corrective Policies: Theory and Evidence from an Energy-Saving Program," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1705-1743.
    19. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    20. Alberto Ponso & Angelo Bonfitto & Giovanni Belingardi, 2023. "Route Planning for Electric Vehicles Including Driving Style, HVAC, Payload and Battery Health," Energies, MDPI, vol. 16(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2880-:d:793998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.