Operation optimization of electricity-steam coupled industrial energy system considering steam accumulator
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129903
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Weijia & Huang, Yuping & Zhao, Daiqing, 2023. "A coupled hydraulic–thermal dynamic model for the steam network in a heat–electricity integrated energy system," Energy, Elsevier, vol. 263(PC).
- Richter, Marcel & Oeljeklaus, Gerd & Görner, Klaus, 2019. "Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage," Applied Energy, Elsevier, vol. 236(C), pages 607-621.
- He, Gui-Xiong & Yan, Hua-guang & Chen, Lei & Tao, Wen-Quan, 2020. "Economic dispatch analysis of regional Electricity–Gas system integrated with distributed gas injection," Energy, Elsevier, vol. 201(C).
- Ono, Hitoi & Ohtani, Yuichi & Matsuo, Minoru & Yamaguchi, Toru & Yokoyama, Ryohei, 2021. "Optimal operation of heat source and air conditioning system with thermal storage tank using nonlinear programming," Energy, Elsevier, vol. 222(C).
- Bartnik, Ryszard & Buryn, Zbigniew & Hnydiuk-Stefan, Anna, 2021. "Thermodynamic and economic analysis of effect of heat accumulator volume on the specific cost of heat production in the gas-steam CHP plant," Energy, Elsevier, vol. 230(C).
- Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
- Zhong, Wei & Feng, Hongcui & Wang, Xuguang & Wu, Dingfei & Xue, Minghua & Wang, Jian, 2015. "Online hydraulic calculation and operation optimization of industrial steam heating networks considering heat dissipation in pipes," Energy, Elsevier, vol. 87(C), pages 566-577.
- Yao, Shuai & Gu, Wei & Wu, Jianzhong & Lu, Hai & Zhang, Suhan & Zhou, Yue & Lu, Shuai, 2022. "Dynamic energy flow analysis of the heat-electricity integrated energy systems with a novel decomposition-iteration algorithm," Applied Energy, Elsevier, vol. 322(C).
- Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Dai, Yuanhang & Hao, Junhong & Wang, Xingce & Chen, Lei & Chen, Qun & Du, Xiaoze, 2022. "A comprehensive model and its optimal dispatch of an integrated electrical-thermal system with multiple heat sources," Energy, Elsevier, vol. 261(PA).
- Zhou, Suyang & Zhuang, Wennan & Wu, Zhi & Gu, Wei & Zhan, Xin & Liu, Zhong & Cao, Siming, 2020. "Optimized scheduling of multi-region Gas and Power Complementary system considering tiered gas tariff," Energy, Elsevier, vol. 193(C).
- Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
- Zhou, Suyang & Chen, Jinyi & Gu, Wei & Fang, Xin & Yuan, Xiaodong, 2023. "An adaptive space-step simulation approach for steam heating network considering condensate loss," Energy, Elsevier, vol. 263(PA).
- Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
- Zhang, Suhan & Gu, Wei & Zhang, Xiao-ping & Lu, Hai & Lu, Shuai & Yu, Ruizhi & Qiu, Haifeng, 2022. "Fully analytical model of heating networks for integrated energy systems," Applied Energy, Elsevier, vol. 327(C).
- Wang, Hai & Wang, Haiying & Zhu, Tong & Deng, Wanli, 2017. "A novel model for steam transportation considering drainage loss in pipeline networks," Applied Energy, Elsevier, vol. 188(C), pages 178-189.
- Gu, Chenjia & Zhang, Yao & Wang, Jianxue & Li, Qingtao, 2021. "Joint planning of electrical storage and gas storage in power-gas distribution network considering high-penetration electric vehicle and gas vehicle," Applied Energy, Elsevier, vol. 301(C).
- Ali, Ramadan Hefny & Abdel Samee, Ahmed A. & Maghrabie, Hussein M., 2023. "Thermodynamic analysis of a cogeneration system in pulp and paper industry under singular and hybrid operating modes," Energy, Elsevier, vol. 263(PE).
- Ma, Jiaze & Chang, Chenglin & Wang, Yufei & Feng, Xiao, 2018. "Multi-objective optimization of multi-period interplant heat integration using steam system," Energy, Elsevier, vol. 159(C), pages 950-960.
- Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhong, Wei & Dai, Zhe & Lin, Xiaojie & Pan, Guanchang, 2024. "Study on time-of-use pricing method for steam heating system considering user response characteristics and thermal storage capacity," Energy, Elsevier, vol. 296(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xinyong Gao & Lijun Zheng & Yaran Wang & Yan Jiang & Yuran Zhang & Wei Fan, 2024. "Simulation of Coupled Hydraulic–Thermal Characteristics for Energy-Saving Control of Steam Heating Pipeline," Sustainability, MDPI, vol. 16(12), pages 1-17, June.
- Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
- Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Zheng, Lingwei & Wu, Hao & Guo, Siqi & Sun, Xinyu, 2023. "Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy," Energy, Elsevier, vol. 277(C).
- Zhou, Suyang & Chen, Jinyi & Gu, Wei & Fang, Xin & Yuan, Xiaodong, 2023. "An adaptive space-step simulation approach for steam heating network considering condensate loss," Energy, Elsevier, vol. 263(PA).
- Zhao, Pan & Gou, Feifei & Xu, Wenpan & Shi, Honghui & Wang, Jiangfeng, 2023. "Energy, exergy, economic and environmental (4E) analyses of an integrated system based on CH-CAES and electrical boiler for wind power penetration and CHP unit heat-power decoupling in wind enrichment," Energy, Elsevier, vol. 263(PC).
- Wang, Chong & Ju, Ping & Wu, Feng & Lei, Shunbo & Hou, Yunhe, 2021. "Coordinated scheduling of integrated power and gas grids in consideration of gas flow dynamics," Energy, Elsevier, vol. 220(C).
- Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Yang, Weijia & Huang, Yuping & Zhao, Daiqing, 2023. "A coupled hydraulic–thermal dynamic model for the steam network in a heat–electricity integrated energy system," Energy, Elsevier, vol. 263(PC).
- Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
- Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
- Huang, Hongxu & Liang, Rui & Lv, Chaoxian & Lu, Mengtian & Gong, Dunwei & Yin, Shulin, 2021. "Two-stage robust stochastic scheduling for energy recovery in coal mine integrated energy system," Applied Energy, Elsevier, vol. 290(C).
- Zhao, Baining & Qian, Tong & Tang, Wenhu & Liang, Qiheng, 2022. "A data-enhanced distributionally robust optimization method for economic dispatch of integrated electricity and natural gas systems with wind uncertainty," Energy, Elsevier, vol. 243(C).
- Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Flexible operation of a combined cycle cogeneration plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 278(C).
- Zhang, Tao & Li, Guojun & Wei, Linyang & Ji, Wenchao & Qiu, Yong & Zhang, Qinrui, 2024. "A novel dynamic simulation strategy for regional integrated energy system considering coupling components failure," Energy, Elsevier, vol. 295(C).
- Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
- Gao, Xian & Knueven, Bernard & Siirola, John D. & Miller, David C. & Dowling, Alexander W., 2022. "Multiscale simulation of integrated energy system and electricity market interactions," Applied Energy, Elsevier, vol. 316(C).
- Zhuang, Wennan & Zhou, Suyang & Gu, Wei & Chen, Xiaogang, 2021. "Optimized dispatching of city-scale integrated energy system considering the flexibilities of city gas gate station and line packing," Applied Energy, Elsevier, vol. 290(C).
- Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Ruan, Yingjun, 2020. "Capacity credit and market value analysis of photovoltaic integration considering grid flexibility requirements," Renewable Energy, Elsevier, vol. 159(C), pages 908-919.
- Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
More about this item
Keywords
Electricity-steam coupled industrial energy system; Interactive iteration scheme between optimization and simulation; Linearization; Operation optimization; Steam accumulator;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032978. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.