Integrating district cooling systems in Locally Integrated Energy Sectors through Total Site Heat Integration
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.05.078
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Broberg Viklund, Sarah & Karlsson, Magnus, 2015. "Industrial excess heat use: Systems analysis and CO2 emissions reduction," Applied Energy, Elsevier, vol. 152(C), pages 189-197.
- Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2014. "Integration of industrial solar and gaseous waste heat into heat recovery loops using constant and variable temperature storage," Energy, Elsevier, vol. 75(C), pages 53-67.
- Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
- Saidur, R., 2009. "Energy consumption, energy savings, and emission analysis in Malaysian office buildings," Energy Policy, Elsevier, vol. 37(10), pages 4104-4113, October.
- Liew, Peng Yen & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2014. "A retrofit framework for Total Site heat recovery systems," Applied Energy, Elsevier, vol. 135(C), pages 778-790.
- Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2016. "District cooling systems: Technology integration, system optimization, challenges and opportunities for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 253-264.
- Desai, Nishith B. & Bandyopadhyay, Santanu, 2009. "Process integration of organic Rankine cycle," Energy, Elsevier, vol. 34(10), pages 1674-1686.
- Kwak, Dong-Hun & Binns, Michael & Kim, Jin-Kuk, 2014. "Integrated design and optimization of technologies for utilizing low grade heat in process industries," Applied Energy, Elsevier, vol. 131(C), pages 307-322.
- Jaruwongwittaya, Tawatchai & Chen, Guangming, 2010. "A review: Renewable energy with absorption chillers in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1437-1444, June.
- Sun, Li & Doyle, Steve & Smith, Robin, 2015. "Heat recovery and power targeting in utility systems," Energy, Elsevier, vol. 84(C), pages 196-206.
- Matsuda, Kazuo & Hirochi, Yoshiichi & Tatsumi, Hiroyuki & Shire, Tim, 2009. "Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants," Energy, Elsevier, vol. 34(10), pages 1687-1692.
- Hackl, Roman & Harvey, Simon, 2013. "Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters," Applied Energy, Elsevier, vol. 112(C), pages 1500-1509.
- Eriksson, Lina & Morandin, Matteo & Harvey, Simon, 2015. "Targeting capital cost of excess heat collection systems in complex industrial sites for district heating applications," Energy, Elsevier, vol. 91(C), pages 465-478.
- Hackl, Roman & Harvey, Simon, 2015. "From heat integration targets toward implementation – A TSA (total site analysis)-based design approach for heat recovery systems in industrial clusters," Energy, Elsevier, vol. 90(P1), pages 163-172.
- Kew Hong Chew & Jiří Jaromír Klemeš & Sharifah Rafidah Wan Alwi & Zainuddin Abdul Manan & Andrea Pietro Reverberi, 2015. "Total Site Heat Integration Considering Pressure Drops," Energies, MDPI, vol. 8(2), pages 1-24, February.
- Somers, C. & Mortazavi, A. & Hwang, Y. & Radermacher, R. & Rodgers, P. & Al-Hashimi, S., 2011. "Modeling water/lithium bromide absorption chillers in ASPEN Plus," Applied Energy, Elsevier, vol. 88(11), pages 4197-4205.
- Miah, J.H. & Griffiths, A. & McNeill, R. & Poonaji, I. & Martin, R. & Leiser, A. & Morse, S. & Yang, A. & Sadhukhan, J., 2015. "Maximising the recovery of low grade heat: An integrated heat integration framework incorporating heat pump intervention for simple and complex factories," Applied Energy, Elsevier, vol. 160(C), pages 172-184.
- Feng, Xiao & Pu, Jing & Yang, Junkun & Chu, Khim Hoong, 2011. "Energy recovery in petrochemical complexes through heat integration retrofit analysis," Applied Energy, Elsevier, vol. 88(5), pages 1965-1982, May.
- Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
- Maurizio Santin & Damiana Chinese & Onorio Saro & Alessandra De Angelis & Alberto Zugliano, 2019. "Carbon and Water Footprint of Energy Saving Options for the Air Conditioning of Electric Cabins at Industrial Sites," Energies, MDPI, vol. 12(19), pages 1-22, September.
- Lee, Peoy Ying & Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2020. "Total Site Heat and Power Integration for Locally Integrated Energy Sectors," Energy, Elsevier, vol. 204(C).
- Lingwei Zhang & Yufei Wang & Xiao Feng, 2021. "A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-21, April.
- Song, Runrun & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part I: A novel screening algorithm," Energy, Elsevier, vol. 140(P1), pages 1018-1029.
- Philipp, Matthias & Schumm, Gregor & Heck, Patrick & Schlosser, Florian & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J., 2018. "Increasing energy efficiency of milk product batch sterilisation," Energy, Elsevier, vol. 164(C), pages 995-1010.
- Jamaluddin, Khairulnadzmi & Wan Alwi, Sharifah Rafidah & Abd Manan, Zainuddin & Hamzah, Khaidzir & Klemeš, Jiří Jaromír, 2022. "Design of Total Site-Integrated TrigenerationSystem using trigeneration cascade analysis considering transmission losses and sensitivity analysis," Energy, Elsevier, vol. 252(C).
- Yan, Chengchu & Gang, Wenjie & Niu, Xiaofeng & Peng, Xujian & Wang, Shengwei, 2017. "Quantitative evaluation of the impact of building load characteristics on energy performance of district cooling systems," Applied Energy, Elsevier, vol. 205(C), pages 635-643.
- Yong, Wen Ni & Liew, Peng Yen & Woon, Kok Sin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2021. "A pinch-based multi-energy targeting framework for combined chilling heating power microgrid of urban-industrial symbiosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Ahn, Yuchan & Han, Jeehoon, 2018. "Economic optimization of integrated network for utility supply and carbon dioxide mitigation with multi-site and multi-period demand uncertainties," Applied Energy, Elsevier, vol. 220(C), pages 723-734.
- Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
- Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
- Pang, Kang Ying & Liew, Peng Yen & Woon, Kok Sin & Ho, Wai Shin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2023. "Multi-period multi-objective optimisation model for multi-energy urban-industrial symbiosis with heat, cooling, power and hydrogen demands," Energy, Elsevier, vol. 262(PA).
- Kong, Karen Gah Hie & How, Bing Shen & Lim, Juin Yau & Leong, Wei Dong & Teng, Sin Yong & Ng, Wendy Pei Qin & Moser, Irene & Sunarso, Jaka, 2022. "Shaving electric bills with renewables? A multi-period pinch-based methodology for energy planning," Energy, Elsevier, vol. 239(PD).
- Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Zainuddin Abdul Manan & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2019. "A Process Integration Method for Total Site Cooling, Heating and Power Optimisation with Trigeneration Systems," Energies, MDPI, vol. 12(6), pages 1-34, March.
- Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.
- Pina, Eduardo A. & Lozano, Miguel A. & Ramos, José C. & Serra, Luis M., 2020. "Tackling thermal integration in the synthesis of polygeneration systems for buildings," Applied Energy, Elsevier, vol. 269(C).
- Chin, Hon Huin & Varbanov, Petar Sabev & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Martincová, Jana Victoria, 2024. "Blockchain-based concept for total site heat integration: A pinch-based smart contract energy management in industrial symbiosis," Energy, Elsevier, vol. 305(C).
- Wu, Wencong & Du, Yuji & Qian, Huijin & Fan, Haibin & Jiang, Zhu & Huang, Shifang & Zhang, Xiaosong, 2024. "Industrial Park low-carbon energy system planning framework: Heat pump based energy conjugation between industry and buildings," Applied Energy, Elsevier, vol. 369(C).
- Ma, Jiaze & Chang, Chenglin & Wang, Yufei & Feng, Xiao, 2018. "Multi-objective optimization of multi-period interplant heat integration using steam system," Energy, Elsevier, vol. 159(C), pages 950-960.
- Ocłoń, Paweł, 2021. "The effect of soil thermal conductivity and cable ampacity on the thermal performance and material costs of underground transmission line," Energy, Elsevier, vol. 231(C).
- Jin, Yuhui & Chang, Chuei-Tin & Li, Shaojun & Jiang, Da, 2018. "On the use of risk-based Shapley values for cost sharing in interplant heat integration programs," Applied Energy, Elsevier, vol. 211(C), pages 904-920.
- Pirmohamadi, Alireza & Ghazi, Mehrangiz & Nikian, Mohammad, 2019. "Optimal design of cogeneration systems in total site using exergy approach," Energy, Elsevier, vol. 166(C), pages 1291-1302.
- Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.
- Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
- Tarighaleslami, Amir H. & Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Liew, Peng Yen & Neale, James R., 2017. "A Unified Total Site Heat Integration targeting method for isothermal and non-isothermal utilities," Energy, Elsevier, vol. 119(C), pages 10-25.
- Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
- Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
- Oluleye, Gbemi & Smith, Robin, 2016. "A mixed integer linear programming model for integrating thermodynamic cycles for waste heat exploitation in process sites," Applied Energy, Elsevier, vol. 178(C), pages 434-453.
- Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Philipp, Matthias & Peesel, Ron-Hendrik, 2018. "Process and utility systems integration and optimisation for ultra-low energy milk powder production," Energy, Elsevier, vol. 146(C), pages 67-81.
- Faramarzi, Simin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Pressure drop optimization in Total Site targeting - A more realistic approach to energy- capital trade-off," Energy, Elsevier, vol. 251(C).
- Hackl, Roman & Harvey, Simon, 2015. "From heat integration targets toward implementation – A TSA (total site analysis)-based design approach for heat recovery systems in industrial clusters," Energy, Elsevier, vol. 90(P1), pages 163-172.
- Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
- Jamaluddin, Khairulnadzmi & Wan Alwi, Sharifah Rafidah & Abd Manan, Zainuddin & Hamzah, Khaidzir & Klemeš, Jiří Jaromír, 2022. "Design of Total Site-Integrated TrigenerationSystem using trigeneration cascade analysis considering transmission losses and sensitivity analysis," Energy, Elsevier, vol. 252(C).
- Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.
- Liew, Peng Yen & Wan Alwi, Sharifah Rafidah & Ho, Wai Shin & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2018. "Multi-period energy targeting for Total Site and Locally Integrated Energy Sectors with cascade Pinch Analysis," Energy, Elsevier, vol. 155(C), pages 370-380.
- Nguyen, Tuong-Van & Fülöp, Tamás Gábor & Breuhaus, Peter & Elmegaard, Brian, 2014. "Life performance of oil and gas platforms: Site integration and thermodynamic evaluation," Energy, Elsevier, vol. 73(C), pages 282-301.
- Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
- Oluleye, Gbemi & Jobson, Megan & Smith, Robin & Perry, Simon J., 2016. "Evaluating the potential of process sites for waste heat recovery," Applied Energy, Elsevier, vol. 161(C), pages 627-646.
- Pirmohamadi, Alireza & Ghazi, Mehrangiz & Nikian, Mohammad, 2019. "Optimal design of cogeneration systems in total site using exergy approach," Energy, Elsevier, vol. 166(C), pages 1291-1302.
- Jin, Yuhui & Chang, Chuei-Tin & Li, Shaojun & Jiang, Da, 2018. "On the use of risk-based Shapley values for cost sharing in interplant heat integration programs," Applied Energy, Elsevier, vol. 211(C), pages 904-920.
- Chang, Hao-Hsuan & Chang, Chuei-Tin & Li, Bao-Hong, 2018. "Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans," Energy, Elsevier, vol. 148(C), pages 90-111.
- Liew, Peng Yen & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2014. "A retrofit framework for Total Site heat recovery systems," Applied Energy, Elsevier, vol. 135(C), pages 778-790.
- Hackl, Roman & Harvey, Simon, 2013. "Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters," Applied Energy, Elsevier, vol. 112(C), pages 1500-1509.
More about this item
Keywords
Total Site Heat Integration; Process Integration; District cooling system; Chilled water network; Waste heat;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1350-1363. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.