IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v155y2018icp77-86.html
   My bibliography  Save this article

Particulate emissions from urban bus fueled with biodiesel blend and their reducing characteristics using particulate after-treatment system

Author

Listed:
  • Zhang, Yunhua
  • Lou, Diming
  • Tan, Piqiang
  • Hu, Zhiyuan

Abstract

Particulate emissions from an urban bus fueled with B20 (20% biodiesel from waste cooking oil and 80% diesel by volume) were investigated using portable emissions measurement system (PEMS), then the effect of a catalyzed continuously regeneration trap (CCRT) on the particulate emissions of the B20-fueled bus were ascertained. Results show that compared with a D100 (pure diesel), B20 reduced particulate number (PN) and particulate mass (PM) emission rates of the bus by 13.9% and 24.3% under cruise control. Under transient condition, B20 reduced the PN and PM emission rates by 18.4% and 16.3%. B20 decreased the total PN concentration by 6.6% whereas increased the proportion of nucleation particles from 89.0% to 92.0%. Correspondingly causing a decrease in the GMD (geometric mean diameter) from 43.02 nm to 41.25 nm under cruise condition, and from 41.26 nm to 39.57 nm under transient condition. Using a CCRT exhibited an excellent filtration effect on both PN and PM from the B20-fueled bus. Both under cruise and transient conditions, CCRT could reduce more than 93% of the PN and PM. In addition, CCRT had a better filtration effect on accumulation particles. The use of CCRT also changed the particle size bimodal distribution of the B20 by removing the accumulation mode peak.

Suggested Citation

  • Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Particulate emissions from urban bus fueled with biodiesel blend and their reducing characteristics using particulate after-treatment system," Energy, Elsevier, vol. 155(C), pages 77-86.
  • Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:77-86
    DOI: 10.1016/j.energy.2018.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218308302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cordiner, Stefano & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Impact of biodiesel fuel on engine emissions and Aftertreatment System operation," Applied Energy, Elsevier, vol. 164(C), pages 972-983.
    2. Caliskan, Hakan & Mori, Kazutoshi, 2017. "Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems," Energy, Elsevier, vol. 128(C), pages 128-144.
    3. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2016. "Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends," Applied Energy, Elsevier, vol. 163(C), pages 71-80.
    4. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    5. Wei, L. & Cheung, C.S. & Ning, Z., 2017. "Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine," Energy, Elsevier, vol. 127(C), pages 175-185.
    6. Senthur Prabu, S. & Asokan, M.A. & Roy, Rahul & Francis, Steff & Sreelekh, M.K., 2017. "Performance, combustion and emission characteristics of diesel engine fuelled with waste cooking oil bio-diesel/diesel blends with additives," Energy, Elsevier, vol. 122(C), pages 638-648.
    7. Agarwal, Avinash Kumar & Gupta, Tarun & Kothari, Abhishek, 2011. "Particulate emissions from biodiesel vs diesel fuelled compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3278-3300, August.
    8. Asokan, M.A. & Senthur prabu, S. & Kamesh, Shikhar & Khan, Wasiuddin, 2018. "Performance, combustion and emission characteristics of diesel engine fuelled with papaya and watermelon seed oil bio-diesel/diesel blends," Energy, Elsevier, vol. 145(C), pages 238-245.
    9. Bari, S., 2014. "Performance, combustion and emission tests of a metro-bus running on biodiesel-ULSD blended (B20) fuel," Applied Energy, Elsevier, vol. 124(C), pages 35-43.
    10. Ramos, Ángel & García-Contreras, Reyes & Armas, Octavio, 2016. "Performance, combustion timing and emissions from a light duty vehicle at different altitudes fueled with animal fat biodiesel, GTL and diesel fuels," Applied Energy, Elsevier, vol. 182(C), pages 507-517.
    11. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    12. He, Bang-Quan, 2016. "Advances in emission characteristics of diesel engines using different biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 570-586.
    13. Sajjad, H. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Arbab, M.I. & Imtenan, S. & Rahman, S.M. Ashrafur, 2014. "Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 961-986.
    14. Zareh, Parvaneh & Zare, Ali Asghar & Ghobadian, Barat, 2017. "Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine," Energy, Elsevier, vol. 139(C), pages 883-894.
    15. Tan, Pi-qiang & Hu, Zhi-yuan & Lou, Di-ming & Li, Zhi-jun, 2012. "Exhaust emissions from a light-duty diesel engine with Jatropha biodiesel fuel," Energy, Elsevier, vol. 39(1), pages 356-362.
    16. Tan, Pi-qiang & Zhong, Yi-mei & Hu, Zhi-yuan & Lou, Di-ming, 2017. "Size distributions, PAHs and inorganic ions of exhaust particles from a heavy duty diesel engine using B20 biodiesel with different exhaust aftertreatments," Energy, Elsevier, vol. 141(C), pages 898-906.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Lewicki & Milena Bera & Monika Śpiewak-Szyjka, 2024. "The Correlation of the Smart City Concept with the Costs of Toxic Exhaust Gas Emissions Based on the Analysis of a Selected Population of Motor Vehicles in Urban Traffic," Energies, MDPI, vol. 17(21), pages 1-19, October.
    2. Lv, Zongyan & Wu, Lin & Yang, Zhiwen & Yang, Lei & Fang, Tiange & Mao, Hongjun, 2023. "Comparison on real-world driving emission characteristics of CNG, LNG and Hybrid-CNG buses," Energy, Elsevier, vol. 262(PB).
    3. Wojcieszyk, Michał & Kroyan, Yuri & Kaario, Ossi & Larmi, Martti, 2023. "Prediction of heavy-duty engine performance for renewable fuels based on fuel property characteristics," Energy, Elsevier, vol. 285(C).
    4. Hu, Zhiyuan & Wang, Zizhou & Luo, Jun & Fu, Jiale & Tan, Piqiang & Lou, Diming, 2023. "Effect of transport distance on the size distribution, graphitized structure, surface functional groups and oxidation activity of PM from diesel engine: A comparison of waste cooking oil biodiesel and," Energy, Elsevier, vol. 282(C).
    5. Dengguo Liu & Diming Lou & Juan Liu & Liang Fang & Weiming Huang, 2018. "Evaluating Nitrogen Oxides and Ultrafine Particulate Matter Emission Features of Urban Bus Based on Real-World Driving Conditions in the Yangtze River Delta Area, China," Sustainability, MDPI, vol. 10(6), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Experimental study on the durability of biodiesel-powered engine equipped with a diesel oxidation catalyst and a selective catalytic reduction system," Energy, Elsevier, vol. 159(C), pages 1024-1034.
    2. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.
    4. Edmundas Kazimieras Zavadskas & Audrius Čereška & Jonas Matijošius & Alfredas Rimkus & Romualdas Bausys, 2019. "Internal Combustion Engine Analysis of Energy Ecological Parameters by Neutrosophic MULTIMOORA and SWARA Methods," Energies, MDPI, vol. 12(8), pages 1-26, April.
    5. Mulkan, Andi & Mohd Zulkifli, Nurin Wahidah & Husin, Husni & Ahmadi, & Dahlan, Irvan, 2024. "Performance and emissions assessment under full load operation of an unmodified diesel engine running on biodiesel-based waste cooking oil synthesized using JPW solid catalyst," Renewable Energy, Elsevier, vol. 224(C).
    6. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    7. Asokan, M.A. & Senthur Prabu, S. & Bade, Pushpa Kiran Kumar & Nekkanti, Venkata Mukesh & Gutta, Sri Sai Gopal, 2019. "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine," Energy, Elsevier, vol. 173(C), pages 883-892.
    8. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    9. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    10. Zhang, Huiming & Zheng, Yu & Cao, Jie & Qiu, Yueming, 2017. "Has government intervention effectively encouraged the use of waste cooking oil as an energy source? Comparison of two Chinese biofuel companies," Energy, Elsevier, vol. 140(P1), pages 708-715.
    11. Kheiralipour, Kamran & Khoobbakht, Mohammad & Karimi, Mahmoud, 2024. "Effect of biodiesel on environmental impacts of diesel mechanical power generation by life cycle assessment," Energy, Elsevier, vol. 289(C).
    12. Wei, L. & Cheung, C.S. & Ning, Z., 2017. "Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine," Energy, Elsevier, vol. 127(C), pages 175-185.
    13. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    14. Wei, L. & Cheung, C.S. & Ning, Z., 2018. "Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine," Energy, Elsevier, vol. 155(C), pages 957-970.
    15. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    16. Rosli, Mohd A.F. & Aziz, A. Rashid A. & Ismael, Mhadi A. & Elbashir, Nimir O. & Zainal A., Ezrann Z. & Baharom, Masri & Mohammed, Salah E., 2021. "Experimental study of micro-explosion and puffing of gas-to-liquid (GTL) fuel blends by suspended droplet method," Energy, Elsevier, vol. 218(C).
    17. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    18. Chen, Chia-Yang & Lee, Wen-Jhy & Wang, Lin-Chi & Chang, Yu-Cheng & Yang, Hsi-Hsien & Young, Li-Hao & Lu, Jau-Huai & Tsai, Ying I. & Cheng, Man-Ting & Mwangi, John Kennedy, 2017. "Impact of high soot-loaded and regenerated diesel particulate filters on the emissions of persistent organic pollutants from a diesel engine fueled with waste cooking oil-based biodiesel," Applied Energy, Elsevier, vol. 191(C), pages 35-43.
    19. Zhong, Wenjun & Tamilselvan, P. & Wang, Qian & He, Zhixia & Feng, Huan & Yu, Xiong, 2018. "Experimental study of spray characteristics of diesel/hydrogenated catalytic biodiesel blended fuels under inert and reacting conditions," Energy, Elsevier, vol. 153(C), pages 349-358.
    20. Tan, Pi-qiang & Zhong, Yi-mei & Hu, Zhi-yuan & Lou, Di-ming, 2017. "Size distributions, PAHs and inorganic ions of exhaust particles from a heavy duty diesel engine using B20 biodiesel with different exhaust aftertreatments," Energy, Elsevier, vol. 141(C), pages 898-906.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:155:y:2018:i:c:p:77-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.