IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v218y2021ics036054422032569x.html
   My bibliography  Save this article

Experimental study of micro-explosion and puffing of gas-to-liquid (GTL) fuel blends by suspended droplet method

Author

Listed:
  • Rosli, Mohd A.F.
  • Aziz, A. Rashid A.
  • Ismael, Mhadi A.
  • Elbashir, Nimir O.
  • Zainal A., Ezrann Z.
  • Baharom, Masri
  • Mohammed, Salah E.

Abstract

In this study, a set of GTL–diesel fuel blends (G20, G50, G80, and G100, where the number represents the percentage of GTL fuel in the fuel blend) are prepared. Subsequently, using the suspended droplet method in a controlled heating chamber, the evaporation behaviour of these GTL fuel blends is visualised using a high-speed camera connected to a long-distance microscope. It is found that, among the tested fuel blends, puffing is not observable for G100, whereas micro-explosions are absent for G20. In comparison, the remaining fuel blends experience both these phenomena. In addition, the highest enlargement factor is observed for G20, followed by G50 and G80, whereas G50 has the highest micro-explosion intensity, followed by G80 and G100. Finally, the numbers and sizes of the child droplets are determined by adjusting the detection threshold, and it is found that G50 has the highest number of child droplets, followed by G80, G100, and G20. The results indicate that the presence of 50% GTL fuel in a GTL–diesel fuel blend (by volume) can lead to the best droplet micro explosions compared to the rest of the tested fuel blends.

Suggested Citation

  • Rosli, Mohd A.F. & Aziz, A. Rashid A. & Ismael, Mhadi A. & Elbashir, Nimir O. & Zainal A., Ezrann Z. & Baharom, Masri & Mohammed, Salah E., 2021. "Experimental study of micro-explosion and puffing of gas-to-liquid (GTL) fuel blends by suspended droplet method," Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:energy:v:218:y:2021:i:c:s036054422032569x
    DOI: 10.1016/j.energy.2020.119462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422032569X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos, Ángel & García-Contreras, Reyes & Armas, Octavio, 2016. "Performance, combustion timing and emissions from a light duty vehicle at different altitudes fueled with animal fat biodiesel, GTL and diesel fuels," Applied Energy, Elsevier, vol. 182(C), pages 507-517.
    2. Kibong Choi & Suhan Park & Hyun Gu Roh & Chang Sik Lee, 2019. "Combustion and Emission Reduction Characteristics of GTL-Biodiesel Fuel in a Single-Cylinder Diesel Engine," Energies, MDPI, vol. 12(11), pages 1-16, June.
    3. Huang, Xiaoyu & Wang, Jigang & Wang, Yuxin & Qiao, Xinqi & Ju, Dehao & Sun, Chunhua & Zhang, Qibin, 2020. "Experimental study on evaporation and micro-explosion characteristics of biodiesel/n-propanol blended droplet," Energy, Elsevier, vol. 205(C).
    4. Sajjad, H. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Arbab, M.I. & Imtenan, S. & Rahman, S.M. Ashrafur, 2014. "Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 961-986.
    5. Park, Sangki & Woo, Seungchul & Kim, Hyungik & Lee, Kihyung, 2016. "The characteristic of spray using diesel water emulsified fuel in a diesel engine," Applied Energy, Elsevier, vol. 176(C), pages 209-220.
    6. Fayad, Mohammed A. & Tsolakis, Athanasios & Martos, Francisco J., 2020. "Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 962-969.
    7. Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua & Mohmmed El-Adawy & Zuhaib Nissar & Masri B. Baharom & Ezrann Z. Zainal A. & Firmansyah, 2018. "Investigation of Puffing and Micro-Explosion of Water-in-Diesel Emulsion Spray Using Shadow Imaging," Energies, MDPI, vol. 11(9), pages 1-12, August.
    8. Zhang, Xiaoqing & Li, Tie & Wang, Bin & Wei, Yijie, 2018. "Superheat limit and micro-explosion in droplets of hydrous ethanol-diesel emulsions at atmospheric pressure and diesel-like conditions," Energy, Elsevier, vol. 154(C), pages 535-543.
    9. Wang, Jigang & Qiao, Xinqi & Ju, Dehao & Wang, Lintao & Sun, Chunhua, 2019. "Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations," Energy, Elsevier, vol. 183(C), pages 149-159.
    10. Shen, Shiquan & Sun, Kai & Che, Zhizhao & Wang, Tianyou & Jia, Ming & Cai, Junqian, 2020. "Mechanism of micro-explosion of water-in-oil emulsified fuel droplet and its effect on soot generation," Energy, Elsevier, vol. 191(C).
    11. Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua, 2018. "The Effect of Fuel Injection Equipment of Water-In-Diesel Emulsions on Micro-Explosion Behaviour," Energies, MDPI, vol. 11(7), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitrii V. Antonov & Roman M. Fedorenko & Pavel A. Strizhak, 2022. "Micro-Explosion Phenomenon: Conditions and Benefits," Energies, MDPI, vol. 15(20), pages 1-19, October.
    2. Wan, Xuesong & Zhang, Weiwei & Deng, Ke & Luo, Maokang, 2024. "Shale gas completion fracturing technology based on FAE controlled burning explosion," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhaowen & Yuan, Bo & Cao, Junhui & Huang, Yuhan & Cheng, Xiaobei & Wang, Yuzhou & Zhang, Xinhua & Liu, Hao, 2022. "A new shift mechanism for micro-explosion of water-diesel emulsion droplets at different ambient temperatures," Applied Energy, Elsevier, vol. 323(C).
    2. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    3. Dmitrii V. Antonov & Roman M. Fedorenko & Pavel A. Strizhak, 2022. "Micro-Explosion Phenomenon: Conditions and Benefits," Energies, MDPI, vol. 15(20), pages 1-19, October.
    4. Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua & Mohmmed El-Adawy & Zuhaib Nissar & Masri B. Baharom & Ezrann Z. Zainal A. & Firmansyah, 2018. "Investigation of Puffing and Micro-Explosion of Water-in-Diesel Emulsion Spray Using Shadow Imaging," Energies, MDPI, vol. 11(9), pages 1-12, August.
    5. Mohd Fadzli Hamid & Yew Heng Teoh & Mohamad Yusof Idroas & Mazlan Mohamed & Shukriwani Sa’ad & Sharzali Che Mat & Muhammad Khalil Abdullah & Thanh Danh Le & Heoy Geok How & Huu Tho Nguyen, 2022. "A Review of the Emulsification Method for Alternative Fuels Used in Diesel Engines," Energies, MDPI, vol. 15(24), pages 1-26, December.
    6. Zhou, Feng & Wang, Jigang & Zhou, Xincong & Qiao, Xinqi & Wen, Xiaofei, 2021. "Effect of 2, 5-dimethylfuran concentration on micro-explosive combustion characteristics of biodiesel droplet," Energy, Elsevier, vol. 224(C).
    7. Han, Kai & Lin, Qizhao & Liu, Minghou & Meng, Kesheng & Ni, Zhanshi & Liu, Yu & Tian, Junjian & Qiu, Zhicong, 2022. "Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/ methanol blended droplets," Renewable Energy, Elsevier, vol. 196(C), pages 261-277.
    8. Huang, Xiaoyu & Wang, Jigang & Wang, Yuxin & Qiao, Xinqi & Ju, Dehao & Sun, Chunhua & Zhang, Qibin, 2020. "Experimental study on evaporation and micro-explosion characteristics of biodiesel/n-propanol blended droplet," Energy, Elsevier, vol. 205(C).
    9. Chen, Zhenbin & Wang, Li & Wei, Zhilong & Wang, Yu & Deng, Jiaojun, 2022. "Effect of components on the emulsification characteristic of glucose solution emulsified heavy fuel oil," Energy, Elsevier, vol. 244(PB).
    10. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Particulate emissions from urban bus fueled with biodiesel blend and their reducing characteristics using particulate after-treatment system," Energy, Elsevier, vol. 155(C), pages 77-86.
    11. Kim, Hyung Jun & Jo, Seongin & Lee, Jong-Tae & Park, Suhan, 2020. "Biodiesel fueled combustion performance and emission characteristics under various intake air temperature and injection timing conditions," Energy, Elsevier, vol. 206(C).
    12. Kumar, Atul & Chen, Hsien-Wen & Yang, Shouyin, 2023. "Modeling microexplosion mechanism in droplet combustion: Puffing and droplet breakup," Energy, Elsevier, vol. 266(C).
    13. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    14. Reyes García-Contreras & Andrés Agudelo & Arántzazu Gómez & Pablo Fernández-Yáñez & Octavio Armas & Ángel Ramos, 2019. "Thermoelectric Energy Recovery in a Light-Duty Diesel Vehicle under Real-World Driving Conditions at Different Altitudes with Diesel, Biodiesel and GTL Fuels," Energies, MDPI, vol. 12(6), pages 1-18, March.
    15. Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
    16. Soriano, J.A. & Mata, C. & Armas, O. & Ávila, C., 2018. "A zero-dimensional model to simulate injection rate from first generation common rail diesel injectors under thermodynamic diagnosis," Energy, Elsevier, vol. 158(C), pages 845-858.
    17. Seifi, Mohammad Reza & Desideri, Umberto & Ghorbani, Zahra & Antonelli, Marco & Frigo, Stefano & Hassan-Beygi, Seyed Reza & Ghobadian, Barat, 2019. "Statistical evaluation of the effect of water percentage in water-diesel emulsion on the engine performance and exhaust emission parameters," Energy, Elsevier, vol. 180(C), pages 797-806.
    18. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayın, Cenk, 2020. "Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator," Energy, Elsevier, vol. 207(C).
    19. Anastasia Islamova & Pavel Tkachenko & Nikita Shlegel & Genii Kuznetsov, 2023. "Secondary Atomization of Fuel Oil and Fuel Oil/Water Emulsion through Droplet-Droplet Collisions and Impingement on a Solid Wall," Energies, MDPI, vol. 16(2), pages 1-27, January.
    20. Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua, 2018. "The Effect of Fuel Injection Equipment of Water-In-Diesel Emulsions on Micro-Explosion Behaviour," Energies, MDPI, vol. 11(7), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:218:y:2021:i:c:s036054422032569x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.