Implementation of a solution to the problem of reference environment in the exergy evaluation of building energy systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.02.098
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Koca, Ahmet & Oztop, Hakan F. & Koyun, Tansel & Varol, Yasin, 2008. "Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector," Renewable Energy, Elsevier, vol. 33(4), pages 567-574.
- Torchia-Núñez, J.C. & Porta-Gándara, M.A. & Cervantes-de Gortari, J.G., 2008. "Exergy analysis of a passive solar still," Renewable Energy, Elsevier, vol. 33(4), pages 608-616.
- Göǧüş, Yalçın A. & Çamdalı, Ünal & Kavsaoğlu, Mehmet Ş., 2002. "Exergy balance of a general system with variation of environmental conditions and some applications," Energy, Elsevier, vol. 27(7), pages 625-646.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Voloshchuk, Volodymyr & Gullo, Paride & Sereda, Volodymyr, 2020. "Advanced exergy-based performance enhancement of heat pump space heating system," Energy, Elsevier, vol. 205(C).
- Sanober Hassan Khattak & Michael Oates & Rick Greenough, 2018. "Towards Improved Energy and Resource Management in Manufacturing," Energies, MDPI, vol. 11(4), pages 1-15, April.
- Sangi, Roozbeh & Müller, Dirk, 2019. "Application of the second law of thermodynamics to control: A review," Energy, Elsevier, vol. 174(C), pages 938-953.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sangi, Roozbeh & Müller, Dirk, 2019. "Application of the second law of thermodynamics to control: A review," Energy, Elsevier, vol. 174(C), pages 938-953.
- Macmanus Chinenye Ndukwu & Lyes Bennamoun & Merlin Simo-Tagne, 2021. "Reviewing the Exergy Analysis of Solar Thermal Systems Integrated with Phase Change Materials," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Michel Pons, 2019. "Exergy Analysis and Process Optimization with Variable Environment Temperature," Energies, MDPI, vol. 12(24), pages 1-19, December.
- Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
- Zhang, Nan & Yuan, Yanping & Du, Yanxia & Cao, Xiaoling & Yuan, Yaguang, 2014. "Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage," Energy, Elsevier, vol. 78(C), pages 950-956.
- Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, Mohammad & Metselaar, H.S.C., 2017. "Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes," Energy, Elsevier, vol. 127(C), pages 101-115.
- Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
- Clark, Ruby-Jean & Farid, Mohammed, 2022. "Experimental investigation into cascade thermochemical energy storage system using SrCl2-cement and zeolite-13X materials," Applied Energy, Elsevier, vol. 316(C).
- Nadal-Bach, Joel & Bruno, Joan Carles & Farnós, Joan & Rovira, Miquel, 2021. "Solar stills and evaporators for the treatment of agro-industrial liquid wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
- Rezaei, M. & Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C., 2013. "Performance and cost analysis of phase change materials with different melting temperatures in heating systems," Energy, Elsevier, vol. 53(C), pages 173-178.
- Tumirah, K. & Hussein, M.Z. & Zulkarnain, Z. & Rafeadah, R., 2014. "Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage," Energy, Elsevier, vol. 66(C), pages 881-890.
- Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
- Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
- Chen, Zhong-Hua & Yu, Fei & Zeng, Xing-Rong & Zhang, Zheng-Guo, 2012. "Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier," Applied Energy, Elsevier, vol. 91(1), pages 7-12.
- Maddah, Hisham A. & Bassyouni, M. & Abdel-Aziz, M.H. & Zoromba, M. Sh & Al-Hossainy, A.F., 2020. "Performance estimation of a mini-passive solar still via machine learning," Renewable Energy, Elsevier, vol. 162(C), pages 489-503.
- Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Hassan, Hamdy, 2020. "Comparing the performance of passive and active double and single slope solar stills incorporated with parabolic trough collector via energy, exergy and productivity," Renewable Energy, Elsevier, vol. 148(C), pages 437-450.
- Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
- Jafarian, Mehdi & Arjomandi, Maziar & Nathan, Graham J., 2013. "A hybrid solar and chemical looping combustion system for solar thermal energy storage," Applied Energy, Elsevier, vol. 103(C), pages 671-678.
- Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
More about this item
Keywords
Ambient temperature; Building energy systems; Exergy; Exergy analysis; Heat pump systems; Reference environment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:149:y:2018:i:c:p:830-836. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.