IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p1006-d142291.html
   My bibliography  Save this article

Towards Improved Energy and Resource Management in Manufacturing

Author

Listed:
  • Sanober Hassan Khattak

    (School of Mechanical, Aerospace and Automotive Engineering, Coventry University, Coventry CV1 5FB, UK)

  • Michael Oates

    (Integrated Environmental Solutions Limited, Helix Buildings, West of Scotland Science Park, Glasgow G20 0SP, UK)

  • Rick Greenough

    (Institute of Energy and Sustainable Development (IESD), De Montfort University, Queens Building, The Gateway, Leicester LE19BH, UK)

Abstract

Exergy analysis has widely been used to assess resource consumption, and to identify opportunities for improvement within manufacturing. The main advantages of this method are its ability to account for energy quality and consumption. However, its application in industrial practice is limited, which may be due to the lack of its consistent application in practice. Current energy management standard, that facilitate consistent application of procedures do not consider the quality aspects of energy flows. An exergy based energy management standards is proposed in this paper that would take into account energy quality aspects, while facilitating the consistent application of exergy analysis in industrial practice. Building on ISO50001, this paper presents guidelines for implementing energy and resource management in factories, incorporating the concepts of exergy and holistic factory simulation, as illustrated through a manufacturing case study. From the factory level analysis, a chilling process was identified to have significant improvement potential. A dry fan cooler, using ambient air was proposed for the improved efficiency of the chillers. Energy based metrics portrayed a system that operated at high efficiency, however exergy analysis indicated much room for further improvement, therefore impacting decision making for technology selection. The contribution of this paper is in presenting a set of prescriptive guidelines that could possibly be further developed into a new energy management standard that would utilize the advantages of exergy analysis towards improved energy and resource management in manufacturing.

Suggested Citation

  • Sanober Hassan Khattak & Michael Oates & Rick Greenough, 2018. "Towards Improved Energy and Resource Management in Manufacturing," Energies, MDPI, vol. 11(4), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:1006-:d:142291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/1006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/1006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    2. Sangi, Roozbeh & Müller, Dirk, 2018. "Implementation of a solution to the problem of reference environment in the exergy evaluation of building energy systems," Energy, Elsevier, vol. 149(C), pages 830-836.
    3. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    4. Wright, A.J. & Oates, M.R. & Greenough, R., 2013. "Concepts for dynamic modelling of energy-related flows in manufacturing," Applied Energy, Elsevier, vol. 112(C), pages 1342-1348.
    5. Wall, Göran, 1988. "Exergy flows in industrial processes," Energy, Elsevier, vol. 13(2), pages 197-208.
    6. Alessandra Caggiano & Adelaide Marzano & Roberto Teti, 2016. "Sustainability Enhancement of a Turbine Vane Manufacturing Cell through Digital Simulation-Based Design," Energies, MDPI, vol. 9(10), pages 1-16, September.
    7. Garwood, Tom Lloyd & Hughes, Ben Richard & Oates, Michael R. & O’Connor, Dominic & Hughes, Ruby, 2018. "A review of energy simulation tools for the manufacturing sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 895-911.
    8. Kyrke Gaudreau & Roydon A. Fraser & Stephen Murphy, 2012. "The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making," Energies, MDPI, vol. 5(7), pages 1-17, July.
    9. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    10. Iker Laskurain & Ander Ibarloza & Ainara Larrea & Erlantz Allur, 2017. "Contribution to Energy Management of the Main Standards for Environmental Management Systems: The Case of ISO 14001 and EMAS," Energies, MDPI, vol. 10(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daissy Lorena Restrepo-Serna & Jimmy Anderson Martínez-Ruano & Carlos Ariel Cardona-Alzate, 2018. "Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material," Energies, MDPI, vol. 11(12), pages 1-12, December.
    2. Justyna Smagowicz & Cezary Szwed & Dawid Dąbal & Pavel Scholz, 2022. "A Simulation Model of Power Demand Management by Manufacturing Enterprises under the Conditions of Energy Sector Transformation," Energies, MDPI, vol. 15(9), pages 1-27, April.
    3. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    4. Zhongwei Zhang & Lihui Wu & Tao Peng & Shun Jia, 2018. "An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment," Sustainability, MDPI, vol. 11(1), pages 1-21, December.
    5. Vichan Nakthong & Kuskana Kubaha, 2019. "Development of a Sustainability Index for an Energy Management System in Thailand," Sustainability, MDPI, vol. 11(17), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garwood, Tom Lloyd & Hughes, Ben Richard & O'Connor, Dominic & Calautit, John K. & Oates, Michael R. & Hodgson, Thomas, 2018. "A framework for producing gbXML building geometry from Point Clouds for accurate and efficient Building Energy Modelling," Applied Energy, Elsevier, vol. 224(C), pages 527-537.
    2. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    3. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    4. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Shaoxiong Li & Le Liu & Changhai Peng, 2020. "A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges," Sustainability, MDPI, vol. 12(4), pages 1-36, February.
    6. Garwood, Tom Lloyd & Hughes, Ben Richard & Oates, Michael R. & O’Connor, Dominic & Hughes, Ruby, 2018. "A review of energy simulation tools for the manufacturing sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 895-911.
    7. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    8. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    9. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    10. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    11. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    12. Yueshi Wu & Weihong Yang & Wlodzimierz Blasiak, 2014. "Energy and Exergy Analysis of High Temperature Agent Gasification of Biomass," Energies, MDPI, vol. 7(4), pages 1-16, April.
    13. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    14. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    15. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    16. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    17. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    18. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    19. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
    20. Niemelä, Tuomo & Kosonen, Risto & Jokisalo, Juha, 2016. "Cost-optimal energy performance renovation measures of educational buildings in cold climate," Applied Energy, Elsevier, vol. 183(C), pages 1005-1020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:1006-:d:142291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.