IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v148y2018icp992-1005.html
   My bibliography  Save this article

The capacity value of optimal wind and solar portfolios

Author

Listed:
  • Shahriari, Mehdi
  • Blumsack, Seth

Abstract

Using large data sets of simulated wind and solar energy production, we create optimal wind, solar and blended (combined wind and solar) portfolios over various spatial and temporal scales, and use portfolio theory to quantify the capacity benefits in various portions of the electric grid in the Eastern United States. We add to the existing literature on portfolio analysis of renewable energy resources by (i) studying the benefits of optimal aggregation over various spatial and temporal scales, (ii) quantifying the capacity benefits of renewable portfolios over space and time, and (iii) analyzing spatial distributions of renewable installations in optimal renewable portfolios. The results indicate that full time availability of wind and blended portfolios are respectively 14 and 17 times larger than full time availability of an individual wind farm and adding solar to wind portfolios increases the availability factor of renewable portfolios by more than 40% in most regions. Further, optimal hourly portfolios provide higher capacity value relative to daily and weekly portfolios.

Suggested Citation

  • Shahriari, Mehdi & Blumsack, Seth, 2018. "The capacity value of optimal wind and solar portfolios," Energy, Elsevier, vol. 148(C), pages 992-1005.
  • Handle: RePEc:eee:energy:v:148:y:2018:i:c:p:992-1005
    DOI: 10.1016/j.energy.2017.12.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217321643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinheiro Neto, Daywes & Domingues, Elder Geraldo & Coimbra, António Paulo & de Almeida, Aníbal Traça & Alves, Aylton José & Calixto, Wesley Pacheco, 2017. "Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil," Energy Economics, Elsevier, vol. 64(C), pages 238-250.
    2. Awerbuch, Shimon & Yang, Spencer, 2007. "Efficient electricity generating portfolios for Europe: maximising energy security and climate change mitigation," EIB Papers 7/2007, European Investment Bank, Economics Department.
    3. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    4. Shahriari, Mehdi & Blumsack, Seth, 2017. "Scaling of wind energy variability over space and time," Applied Energy, Elsevier, vol. 195(C), pages 572-585.
    5. Muñoz, José Ignacio & Sánchez de la Nieta, Agustín A. & Contreras, Javier & Bernal-Agustín, José L., 2009. "Optimal investment portfolio in renewable energy: The Spanish case," Energy Policy, Elsevier, vol. 37(12), pages 5273-5284, December.
    6. Stoutenburg, Eric D. & Jenkins, Nicholas & Jacobson, Mark Z., 2010. "Power output variations of co-located offshore wind turbines and wave energy converters in California," Renewable Energy, Elsevier, vol. 35(12), pages 2781-2791.
    7. Novacheck, Joshua & Johnson, Jeremiah X., 2017. "Diversifying wind power in real power systems," Renewable Energy, Elsevier, vol. 106(C), pages 177-185.
    8. Costa, Oswaldo L.V. & de Oliveira Ribeiro, Celma & Rego, Erik Eduardo & Stern, Julio Michael & Parente, Virginia & Kileber, Solange, 2017. "Robust portfolio optimization for electricity planning: An application based on the Brazilian electricity mix," Energy Economics, Elsevier, vol. 64(C), pages 158-169.
    9. Santos-Alamillos, F.J. & Thomaidis, N.S. & Usaola-García, J. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2017. "Exploring the mean-variance portfolio optimization approach for planning wind repowering actions in Spain," Renewable Energy, Elsevier, vol. 106(C), pages 335-342.
    10. Handschy, Mark A. & Rose, Stephen & Apt, Jay, 2017. "Is it always windy somewhere? Occurrence of low-wind-power events over large areas," Renewable Energy, Elsevier, vol. 101(C), pages 1124-1130.
    11. Shimon Awerbuch, 2006. "Portfolio-Based Electricity Generation Planning: Policy Implications For Renewables And Energy Security," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 693-710, May.
    12. Katzenstein, Warren & Fertig, Emily & Apt, Jay, 2010. "The variability of interconnected wind plants," Energy Policy, Elsevier, vol. 38(8), pages 4400-4410, August.
    13. Buttler, Alexander & Dinkel, Felix & Franz, Simon & Spliethoff, Hartmut, 2016. "Variability of wind and solar power – An assessment of the current situation in the European Union based on the year 2014," Energy, Elsevier, vol. 106(C), pages 147-161.
    14. Delarue, Erik & De Jonghe, Cedric & Belmans, Ronnie & D'haeseleer, William, 2011. "Applying portfolio theory to the electricity sector: Energy versus power," Energy Economics, Elsevier, vol. 33(1), pages 12-23, January.
    15. Arnesano, M. & Carlucci, A.P. & Laforgia, D., 2012. "Extension of portfolio theory application to energy planning problem – The Italian case," Energy, Elsevier, vol. 39(1), pages 112-124.
    16. Zhu, Lei & Fan, Ying, 2010. "Optimization of China's generating portfolio and policy implications based on portfolio theory," Energy, Elsevier, vol. 35(3), pages 1391-1402.
    17. Drake, Ben & Hubacek, Klaus, 2007. "What to expect from a greater geographic dispersion of wind farms?--A risk portfolio approach," Energy Policy, Elsevier, vol. 35(8), pages 3999-4008, August.
    18. Gunturu, Udaya Bhaskar & Schlosser, C. Adam, 2015. "Behavior of the aggregate wind resource in the ISO regions in the United States," Applied Energy, Elsevier, vol. 144(C), pages 175-181.
    19. Rose, Stephen & Apt, Jay, 2015. "What can reanalysis data tell us about wind power?," Renewable Energy, Elsevier, vol. 83(C), pages 963-969.
    20. Huang, Junling & Lu, Xi & McElroy, Michael B., 2014. "Meteorologically defined limits to reduction in the variability of outputs from a coupled wind farm system in the Central US," Renewable Energy, Elsevier, vol. 62(C), pages 331-340.
    21. Katzenstein, Warren & Apt, Jay, 2012. "The cost of wind power variability," Energy Policy, Elsevier, vol. 51(C), pages 233-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M, Jisma & Mohan, Vivek & Thomas, Mini Shaji & Madhu M, Nimal, 2022. "Risk-Calibrated conventional-renewable generation mix using master-slave portfolio approach guided by flexible investor preferencing," Energy, Elsevier, vol. 245(C).
    2. Tapia Carpio, Lucio Guido, 2021. "Mitigating the risk of photovoltaic power generation: A complementarity model of solar irradiation in diverse regions applied to Brazil," Utilities Policy, Elsevier, vol. 71(C).
    3. Vuichard, Pascal & Stauch, Alexander & Wüstenhagen, Rolf, 2021. "Keep it local and low-key: Social acceptance of alpine solar power projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Lima, Marcello Anderson F.B. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M. & Braga, Arthur P.S., 2020. "Improving solar forecasting using Deep Learning and Portfolio Theory integration," Energy, Elsevier, vol. 195(C).
    5. Li, Carmen & Chyong, Chi Kong & Reiner, David M. & Roques, Fabien, 2024. "Taking a Portfolio approach to wind and solar deployment: The case of the National Electricity Market in Australia," Applied Energy, Elsevier, vol. 369(C).
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Ye, Lin & Zhang, Cihang & Xue, Hui & Li, Jiachen & Lu, Peng & Zhao, Yongning, 2019. "Study of assessment on capability of wind power accommodation in regional power grids," Renewable Energy, Elsevier, vol. 133(C), pages 647-662.
    8. Han, Chanok & Vinel, Alexander, 2022. "Reducing forecasting error by optimally pooling wind energy generation sources through portfolio optimization," Energy, Elsevier, vol. 239(PB).
    9. Huang, Zhenyu & Liu, Youbo & Li, Kecun & Liu, Jichun & Gao, Hongjun & Qiu, Gao & Shen, Xiaodong & Liu, Junyong, 2023. "Evaluating long-term profile of demand response under different market designs: A comparison of scarcity pricing and capacity auction," Energy, Elsevier, vol. 282(C).
    10. Park, Jungyeon & Alvarenga, Estêvão & Jeon, Jooyoung & Li, Ran & Petropoulos, Fotios & Kim, Hokyun & Ahn, Kwangwon, 2024. "Probabilistic forecast-based portfolio optimization of electricity demand at low aggregation levels," Applied Energy, Elsevier, vol. 353(PB).
    11. López Prol, Javier & de Llano Paz, Fernando & Calvo-Silvosa, Anxo & Pfenninger, Stefan & Staffell, Iain, 2024. "Wind-solar technological, spatial and temporal complementarities in Europe: A portfolio approach," Energy, Elsevier, vol. 292(C).
    12. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2019. "Geographical optimization of variable renewable energy capacity in China using modern portfolio theory," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Lobato, E. & Doenges, K. & Egido, I. & Sigrist, L., 2020. "Limits to wind aggregation: Empirical assessment in the Spanish electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 1321-1330.
    14. Chen, Chen & Liu, Dinghao & Xian, Liang & Pan, Lin & Wang, Lihua & Yang, Min & Quan, Li, 2020. "Best-case scenario robust portfolio for energy stock market," Energy, Elsevier, vol. 213(C).
    15. Castro, Gabriel Malta & Klöckl, Claude & Regner, Peter & Schmidt, Johannes & Pereira, Amaro Olimpio, 2022. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Energy Economics, Elsevier, vol. 111(C).
    16. Gabriel Malta Castro & Claude Klockl & Peter Regner & Johannes Schmidt & Amaro Olimpio Pereira Jr, 2021. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Papers 2105.08182, arXiv.org.
    17. Tangerås, Thomas & Wolak, Frank A., 2019. "Locational Marginal Network Tariffs for Intermittent Renewable Generation," Working Paper Series 1310, Research Institute of Industrial Economics.
    18. Chu, Cheng-Ta & Hawkes, Adam D., 2020. "Optimal mix of climate-related energy in global electricity systems," Renewable Energy, Elsevier, vol. 160(C), pages 955-963.
    19. Kashanian, Motahareh & Pishvaee, Mir Saman & Sahebi, Hadi, 2020. "Sustainable biomass portfolio sourcing plan using multi-stage stochastic programming," Energy, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turkson, Charles & Liu, Wenbin & Acquaye, Adolf, 2024. "A data envelopment analysis based evaluation of sustainable energy generation portfolio scenarios," Applied Energy, Elsevier, vol. 363(C).
    2. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    3. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    4. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    5. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2018. "Pollutant versus non-pollutant generation technologies: a CML-analogous analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 199-212, December.
    6. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    7. de-Llano Paz, Fernando & Antelo, Susana Iglesias & Calvo Silvosa, Anxo & Soares, Isabel, 2014. "The technological and environmental efficiency of the EU-27 power mix: An evaluation based on MPT," Energy, Elsevier, vol. 69(C), pages 67-81.
    8. Lobato, E. & Doenges, K. & Egido, I. & Sigrist, L., 2020. "Limits to wind aggregation: Empirical assessment in the Spanish electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 1321-1330.
    9. Pérez Odeh, Rodrigo & Watts, David & Negrete-Pincetic, Matías, 2018. "Portfolio applications in electricity markets review: Private investor and manager perspective trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 192-204.
    10. deLlano-Paz, Fernando & Martínez Fernandez, Paulino & Soares, Isabel, 2016. "Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues," Energy, Elsevier, vol. 115(P2), pages 1347-1360.
    11. Li, Carmen & Chyong, Chi Kong & Reiner, David M. & Roques, Fabien, 2024. "Taking a Portfolio approach to wind and solar deployment: The case of the National Electricity Market in Australia," Applied Energy, Elsevier, vol. 369(C).
    12. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    13. Shakouri, Mahmoud & Lee, Hyun Woo & Choi, Kunhee, 2015. "PACPIM: New decision-support model of optimized portfolio analysis for community-based photovoltaic investment," Applied Energy, Elsevier, vol. 156(C), pages 607-617.
    14. Ilka Deluque & Ekundayo Shittu & Jonathan Deason, 2018. "Evaluating the reliability of efficient energy technology portfolios," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 115-138, June.
    15. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    16. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    17. Álvarez-García, Francisco J. & Fresno-Schmolk, Gonzalo & OrtizBevia, María J. & Cabos, William & RuizdeElvira, Antonio, 2020. "Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula," Renewable Energy, Elsevier, vol. 159(C), pages 151-161.
    18. Shahriari, M. & Cervone, G. & Clemente-Harding, L. & Delle Monache, L., 2020. "Using the analog ensemble method as a proxy measurement for wind power predictability," Renewable Energy, Elsevier, vol. 146(C), pages 789-801.
    19. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    20. Han, Chanok & Vinel, Alexander, 2022. "Reducing forecasting error by optimally pooling wind energy generation sources through portfolio optimization," Energy, Elsevier, vol. 239(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:148:y:2018:i:c:p:992-1005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.