IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp151-161.html
   My bibliography  Save this article

Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula

Author

Listed:
  • Álvarez-García, Francisco J.
  • Fresno-Schmolk, Gonzalo
  • OrtizBevia, María J.
  • Cabos, William
  • RuizdeElvira, Antonio

Abstract

In this work, the ability of the Empirical Orthogonal Teleconnections technique to provide useful information for decisions on wind capacity allocation aimed at enhanced output stability is explored. Using data from a high-resolution simulation with the regional climate model REMO over the Iberian Peninsula, the performance of Empirical Orthogonal Teleconnections is assessed against the outcome of random wind farm siting, and also against an alternative procedure employing Principal Component Analysis. Results show that siting informed by the Empirical Orthogonal Teleconnections methodology leads to increased probabilities of achieving higher firm capacities and lower output variance, improving not only the random allocation, but that given by the Principal Component Analysis procedure as well. The benefits stem from the smoothing effect of aggregating the output from wind farms located within specific areas identified by our technique. Our appraisal also considers the spatial extent of the areas made available to the siting choice, as well as the effects on the capacity factor. Being a comparatively inexpensive technique, Empirical Orthogonal Teleconnections offers good prospects for further diagnosis of the wind intermittency problem and its mitigation through spatial aggregation, and also as a preliminary, dimension reductive assessment for the application of more computationally demanding methods.

Suggested Citation

  • Álvarez-García, Francisco J. & Fresno-Schmolk, Gonzalo & OrtizBevia, María J. & Cabos, William & RuizdeElvira, Antonio, 2020. "Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula," Renewable Energy, Elsevier, vol. 159(C), pages 151-161.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:151-161
    DOI: 10.1016/j.renene.2020.05.153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grothe, Oliver & Schnieders, Julius, 2011. "Spatial dependence in wind and optimal wind power allocation: A copula-based analysis," Energy Policy, Elsevier, vol. 39(9), pages 4742-4754, September.
    2. Tarroja, Brian & Mueller, Fabian & Eichman, Joshua D. & Brouwer, Jack & Samuelsen, Scott, 2011. "Spatial and temporal analysis of electric wind generation intermittency and dynamics," Renewable Energy, Elsevier, vol. 36(12), pages 3424-3432.
    3. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    4. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren & Söder, Lennart, 2018. "Analysis of wind power intermittency based on historical wind power data," Energy, Elsevier, vol. 150(C), pages 482-492.
    5. Rombauts, Yannick & Delarue, Erik & D’haeseleer, William, 2011. "Optimal portfolio-theory-based allocation of wind power: Taking into account cross-border transmission-capacity constraints," Renewable Energy, Elsevier, vol. 36(9), pages 2374-2387.
    6. Katzenstein, Warren & Fertig, Emily & Apt, Jay, 2010. "The variability of interconnected wind plants," Energy Policy, Elsevier, vol. 38(8), pages 4400-4410, August.
    7. Dowds, Jonathan & Hines, Paul & Ryan, Todd & Buchanan, William & Kirby, Elizabeth & Apt, Jay & Jaramillo, Paulina, 2015. "A review of large-scale wind integration studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 768-794.
    8. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    9. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Lara-Fanego, V. & Tovar-Pescador, J., 2014. "A methodology for evaluating the spatial variability of wind energy resources: Application to assess the potential contribution of wind energy to baseload power," Renewable Energy, Elsevier, vol. 69(C), pages 147-156.
    10. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    11. Santos-Alamillos, F.J. & Thomaidis, N.S. & Quesada-Ruiz, S. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2016. "Do current wind farms in Spain take maximum advantage of spatiotemporal balancing of the wind resource?," Renewable Energy, Elsevier, vol. 96(PA), pages 574-582.
    12. Shahriari, Mehdi & Blumsack, Seth, 2017. "Scaling of wind energy variability over space and time," Applied Energy, Elsevier, vol. 195(C), pages 572-585.
    13. Grothe, Oliver & Schnieders, Julius, 2011. "Spatial Dependence in Wind and Optimal Wind Power Allocation: A Copula Based Analysis," EWI Working Papers 2011-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    14. Drake, Ben & Hubacek, Klaus, 2007. "What to expect from a greater geographic dispersion of wind farms?--A risk portfolio approach," Energy Policy, Elsevier, vol. 35(8), pages 3999-4008, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castro, Gabriel Malta & Klöckl, Claude & Regner, Peter & Schmidt, Johannes & Pereira, Amaro Olimpio, 2022. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Energy Economics, Elsevier, vol. 111(C).
    2. Lobato, E. & Doenges, K. & Egido, I. & Sigrist, L., 2020. "Limits to wind aggregation: Empirical assessment in the Spanish electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 1321-1330.
    3. Shahriari, M. & Cervone, G. & Clemente-Harding, L. & Delle Monache, L., 2020. "Using the analog ensemble method as a proxy measurement for wind power predictability," Renewable Energy, Elsevier, vol. 146(C), pages 789-801.
    4. Thomaidis, Nikolaos S. & Christodoulou, Theodoros & Santos-Alamillos, Francisco J., 2023. "Handling the risk dimensions of wind energy generation," Applied Energy, Elsevier, vol. 339(C).
    5. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    6. Gabriel Malta Castro & Claude Klockl & Peter Regner & Johannes Schmidt & Amaro Olimpio Pereira Jr, 2021. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Papers 2105.08182, arXiv.org.
    7. Shahriari, Mehdi & Blumsack, Seth, 2018. "The capacity value of optimal wind and solar portfolios," Energy, Elsevier, vol. 148(C), pages 992-1005.
    8. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).
    9. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2019. "Geographical optimization of variable renewable energy capacity in China using modern portfolio theory," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Santos-Alamillos, F.J. & Thomaidis, N.S. & Usaola-García, J. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2017. "Exploring the mean-variance portfolio optimization approach for planning wind repowering actions in Spain," Renewable Energy, Elsevier, vol. 106(C), pages 335-342.
    11. Yuan, Qiheng & Zhou, Keliang & Yao, Jing, 2020. "A new measure of wind power variability with implications for the optimal sizing of standalone wind power systems," Renewable Energy, Elsevier, vol. 150(C), pages 538-549.
    12. Han, Chanok & Vinel, Alexander, 2022. "Reducing forecasting error by optimally pooling wind energy generation sources through portfolio optimization," Energy, Elsevier, vol. 239(PB).
    13. Ciupăgeanu, Dana-Alexandra & Lăzăroiu, Gheorghe & Barelli, Linda, 2019. "Wind energy integration: Variability analysis and power system impact assessment," Energy, Elsevier, vol. 185(C), pages 1183-1196.
    14. Lauren Knapp & Jacob Ladenburg, 2015. "How Spatial Relationships Influence Economic Preferences for Wind Power—A Review," Energies, MDPI, vol. 8(6), pages 1-25, June.
    15. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    16. Jia, Ke & Li, Yanbin & Fang, Yu & Zheng, Liming & Bi, Tianshu & Yang, Qixun, 2018. "Transient current similarity based protection for wind farm transmission lines," Applied Energy, Elsevier, vol. 225(C), pages 42-51.
    17. Grothe, Oliver & Müsgens, Felix, 2012. "The influence of spatial effects on wind power revenues under direct marketing rules," EWI Working Papers 2012-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. Obermüller, Frank, 2017. "Build Wind Capacities at Windy Locations? Assessment of System Optimal Wind Locations," EWI Working Papers 2017-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    19. Novacheck, Joshua & Johnson, Jeremiah X., 2017. "Diversifying wind power in real power systems," Renewable Energy, Elsevier, vol. 106(C), pages 177-185.
    20. Odeh, Rodrigo Pérez & Watts, David, 2019. "Impacts of wind and solar spatial diversification on its market value: A case study of the Chilean electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 442-461.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:151-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.