IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/2077.html
   My bibliography  Save this paper

A Portfolio approach to wind and solar deployment in Australia

Author

Listed:
  • Chyong, C K.
  • Li, C.
  • Reiner, D.
  • Roques, F.

Abstract

We develop a new framework that can be used to analyse interactions between solar and wind generation using a Mean-Variance Portfolio Theory (MPT) framework. We use this framework to understand the role of electricity transmission integrating a high share of Variable Renewable Energy (VRE) and investigate the optimal generation mix consisting of wind and solar for Australia’s National Electricity Market (NEM). For the same level of risk, we find that the average capacity factor of VRE could be 7% higher if transmission constraints are alleviated. Our results show that in order to minimise the risks of a VREdominated generation portfolio, transmission capacity and efficient access will become very important – at a high level of VRE penetration in NEM, a marginal increase in transmission capacity reduces system risks associated with wind and solar uncertainties by ca. 0.25 p.p. Lack of transmission capacity therefore implies potentially greater risks to VRE generators and hence higher energy costs at high levels of VRE penetration. Using our proposed approach (residual demand minimisation), which accounts for the dynamics of electricity generation associated with wind and solar as well as with demand, we find investment in solar generation is rewarded more than when using an output maximisation approach that ignores patterns of demand. For example, on average, solar share reaches 15.4% under the residual demand minimisation approach versus 12.5% under output maximisation approach. Investment in solar is also sensitive to the way we formulate our risk objective, being less favourable if we consider only peak hours than if we consider all hours. Further, our results suggest that wind generation and transmission capacity expansion are complements NEMwide while solar generation and wind generation are complements within the same region.

Suggested Citation

  • Chyong, C K. & Li, C. & Reiner, D. & Roques, F., 2020. "A Portfolio approach to wind and solar deployment in Australia," Cambridge Working Papers in Economics 2077, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:2077
    Note: kc335, dmr40
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe2077.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F., 2012. "The economics of planning electricity transmission to accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty," Energy Economics, Elsevier, vol. 34(6), pages 2089-2101.
    2. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    3. Stirling, Andrew, 1994. "Diversity and ignorance in electricity supply investment : Addressing the solution rather than the problem," Energy Policy, Elsevier, vol. 22(3), pages 195-216, March.
    4. Bar-Lev, Dan & Katz, Steven, 1976. "A Portfolio Approach to Fossil Fuel Procurement in the Electric Utility Industry," Journal of Finance, American Finance Association, vol. 31(3), pages 933-947, June.
    5. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    6. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    7. Awerbuch, Shimon & Yang, Spencer, 2007. "Efficient electricity generating portfolios for Europe: maximising energy security and climate change mitigation," EIB Papers 7/2007, European Investment Bank, Economics Department.
    8. H. Brett Humphreys & Katherine T. McClain, 1998. "Reducing the Impacts of Energy Price Volatility Through Dynamic Portfolio Selection," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 107-131.
    9. Rombauts, Yannick & Delarue, Erik & D’haeseleer, William, 2011. "Optimal portfolio-theory-based allocation of wind power: Taking into account cross-border transmission-capacity constraints," Renewable Energy, Elsevier, vol. 36(9), pages 2374-2387.
    10. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    11. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    12. Park, Heejung & Baldick, Ross, 2016. "Multi-year stochastic generation capacity expansion planning under environmental energy policy," Applied Energy, Elsevier, vol. 183(C), pages 737-745.
    13. Delarue, Erik & De Jonghe, Cedric & Belmans, Ronnie & D'haeseleer, William, 2011. "Applying portfolio theory to the electricity sector: Energy versus power," Energy Economics, Elsevier, vol. 33(1), pages 12-23, January.
    14. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    15. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    16. Muñoz, José Ignacio & Sánchez de la Nieta, Agustín A. & Contreras, Javier & Bernal-Agustín, José L., 2009. "Optimal investment portfolio in renewable energy: The Spanish case," Energy Policy, Elsevier, vol. 37(12), pages 5273-5284, December.
    17. Chao, Hung-po & Wilson, Robert, 2020. "Coordination of electricity transmission and generation investments," Energy Economics, Elsevier, vol. 86(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Carmen & Chyong, Chi Kong & Reiner, David M. & Roques, Fabien, 2024. "Taking a Portfolio approach to wind and solar deployment: The case of the National Electricity Market in Australia," Applied Energy, Elsevier, vol. 369(C).
    2. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    3. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    4. López Prol, Javier & de Llano Paz, Fernando & Calvo-Silvosa, Anxo & Pfenninger, Stefan & Staffell, Iain, 2024. "Wind-solar technological, spatial and temporal complementarities in Europe: A portfolio approach," Energy, Elsevier, vol. 292(C).
    5. Marrero, Gustavo A. & Puch, Luis A. & Ramos-Real, Francisco J., 2015. "Mean-variance portfolio methods for energy policy risk management," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 246-264.
    6. Lynch, Muireann Á. & Shortt, Aonghus & Tol, Richard S.J. & O'Malley, Mark J., 2013. "Risk–return incentives in liberalised electricity markets," Energy Economics, Elsevier, vol. 40(C), pages 598-608.
    7. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    8. de-Llano Paz, Fernando & Antelo, Susana Iglesias & Calvo Silvosa, Anxo & Soares, Isabel, 2014. "The technological and environmental efficiency of the EU-27 power mix: An evaluation based on MPT," Energy, Elsevier, vol. 69(C), pages 67-81.
    9. Turkson, Charles & Liu, Wenbin & Acquaye, Adolf, 2024. "A data envelopment analysis based evaluation of sustainable energy generation portfolio scenarios," Applied Energy, Elsevier, vol. 363(C).
    10. Gabrielli, Paolo & Aboutalebi, Reyhaneh & Sansavini, Giovanni, 2022. "Mitigating financial risk of corporate power purchase agreements via portfolio optimization," Energy Economics, Elsevier, vol. 109(C).
    11. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    12. deLlano-Paz, Fernando & Martínez Fernandez, Paulino & Soares, Isabel, 2016. "Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues," Energy, Elsevier, vol. 115(P2), pages 1347-1360.
    13. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    14. Kendziorski, Mario & Göke, Leonard & von Hirschhausen, Christian & Kemfert, Claudia & Zozmann, Elmar, 2022. "Centralized and decentral approaches to succeed the 100% energiewende in Germany in the European context – A model-based analysis of generation, network, and storage investments," Energy Policy, Elsevier, vol. 167(C).
    15. Pérez Odeh, Rodrigo & Watts, David & Negrete-Pincetic, Matías, 2018. "Portfolio applications in electricity markets review: Private investor and manager perspective trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 192-204.
    16. Shakouri, Mahmoud & Lee, Hyun Woo & Choi, Kunhee, 2015. "PACPIM: New decision-support model of optimized portfolio analysis for community-based photovoltaic investment," Applied Energy, Elsevier, vol. 156(C), pages 607-617.
    17. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2017. "Investment decisions considering economic, environmental and social factors: An actors' perspective for the electricity sector of Mexico," Energy, Elsevier, vol. 121(C), pages 92-106.
    18. Shahriari, Mehdi & Blumsack, Seth, 2018. "The capacity value of optimal wind and solar portfolios," Energy, Elsevier, vol. 148(C), pages 992-1005.
    19. Allan, Grant & Eromenko, Igor & McGregor, Peter & Swales, Kim, 2011. "The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies," Energy Policy, Elsevier, vol. 39(1), pages 6-22, January.
    20. repec:ers:journl:v:xv:y:2012:i:sie:p:3-30 is not listed on IDEAS
    21. Escribano Francés, Gonzalo & Marín-Quemada, José María & San Martín González, Enrique, 2013. "RES and risk: Renewable energy's contribution to energy security. A portfolio-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 549-559.

    More about this item

    Keywords

    electricity planning; transmission capacity; geographic and technological diversification; mean-variance portfolio theory (MPT);
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.