IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v133y2019icp647-662.html
   My bibliography  Save this article

Study of assessment on capability of wind power accommodation in regional power grids

Author

Listed:
  • Ye, Lin
  • Zhang, Cihang
  • Xue, Hui
  • Li, Jiachen
  • Lu, Peng
  • Zhao, Yongning

Abstract

With the development of large-scale wind power integration, wind curtailment appears around the world, especially in China. It is essential to perform the assessment on capability of wind power accommodation (ACWPA) by calculating the maximum admissible wind power which plays an important role in system planning and operation. This paper proposes a long-term assessment on the maximum level of wind power installed capacity in future years based on peak power regulation, with consideration of potential wind curtailment. Meanwhile, a short-term assessment based on wind power forecasting is developed through day-ahead unit commitment to get admissible zone of wind power in grid operation. In particular, the extreme wind variation scenario (EWVS) calculated by quadratic programming (QP) is applied to optimize upper limit of admissible zone. Case studies are carried out to analyze wind power characteristics in a province in Southern China. Results show that the proposed approaches can effectively and accurately evaluate the capability of wind power accommodation in regional power grids.

Suggested Citation

  • Ye, Lin & Zhang, Cihang & Xue, Hui & Li, Jiachen & Lu, Peng & Zhao, Yongning, 2019. "Study of assessment on capability of wind power accommodation in regional power grids," Renewable Energy, Elsevier, vol. 133(C), pages 647-662.
  • Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:647-662
    DOI: 10.1016/j.renene.2018.10.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118312266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Yi & Lin, Heyun & Ho, S.L. & Yan, Jianhu & Dong, Jianning & Fang, Shuhua & Huang, Yunkai, 2015. "Overview of wind power generation in China: Status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 847-858.
    2. Gouveia, João Pedro & Dias, Luís & Martins, Inês & Seixas, Júlia, 2014. "Effects of renewables penetration on the security of Portuguese electricity supply," Applied Energy, Elsevier, vol. 123(C), pages 438-447.
    3. Dowds, Jonathan & Hines, Paul & Ryan, Todd & Buchanan, William & Kirby, Elizabeth & Apt, Jay & Jaramillo, Paulina, 2015. "A review of large-scale wind integration studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 768-794.
    4. Shahriari, Mehdi & Blumsack, Seth, 2018. "The capacity value of optimal wind and solar portfolios," Energy, Elsevier, vol. 148(C), pages 992-1005.
    5. Nahid-Al-Masood, & Yan, Ruifeng & Saha, Tapan Kumar, 2015. "A new tool to estimate maximum wind power penetration level: In perspective of frequency response adequacy," Applied Energy, Elsevier, vol. 154(C), pages 209-220.
    6. Kaldellis, J.K. & Kavadias, K.A. & Filios, A.E., 2009. "A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1011-1023, July.
    7. Staid, Andrea & Guikema, Seth D., 2013. "Statistical analysis of installed wind capacity in the United States," Energy Policy, Elsevier, vol. 60(C), pages 378-385.
    8. Jadidoleslam, Morteza & Ebrahimi, Akbar & Latify, Mohammad Amin, 2017. "Probabilistic transmission expansion planning to maximize the integration of wind power," Renewable Energy, Elsevier, vol. 114(PB), pages 866-878.
    9. Novacheck, Joshua & Johnson, Jeremiah X., 2017. "Diversifying wind power in real power systems," Renewable Energy, Elsevier, vol. 106(C), pages 177-185.
    10. Beccali, M. & Brunone, S. & Finocchiaro, P. & Galletto, J.M., 2013. "Method for size optimisation of large wind–hydrogen systems with high penetration on power grids," Applied Energy, Elsevier, vol. 102(C), pages 534-544.
    11. Waite, Michael & Modi, Vijay, 2016. "Modeling wind power curtailment with increased capacity in a regional electricity grid supplying a dense urban demand," Applied Energy, Elsevier, vol. 183(C), pages 299-317.
    12. Mc Garrigle, E.V. & Deane, J.P. & Leahy, P.G., 2013. "How much wind energy will be curtailed on the 2020 Irish power system?," Renewable Energy, Elsevier, vol. 55(C), pages 544-553.
    13. Biresselioglu, Mehmet Efe & Kilinc, Dilara & Onater-Isberk, Esra & Yelkenci, Tezer, 2016. "Estimating the political, economic and environmental factors’ impact on the installed wind capacity development: A system GMM approach," Renewable Energy, Elsevier, vol. 96(PA), pages 636-644.
    14. Yáñez, Juan Pablo & Kunith, Alexander & Chávez-Arroyo, Roberto & Romo-Perea, Alejandro & Probst, Oliver, 2014. "Assessment of the capacity credit of wind power in Mexico," Renewable Energy, Elsevier, vol. 72(C), pages 62-78.
    15. Purvins, Arturs & Zubaryeva, Alyona & Llorente, Maria & Tzimas, Evangelos & Mercier, Arnaud, 2011. "Challenges and options for a large wind power uptake by the European electricity system," Applied Energy, Elsevier, vol. 88(5), pages 1461-1469, May.
    16. Luo, Guo-liang & Li, Yan-ling & Tang, Wen-jun & Wei, Xiao, 2016. "Wind curtailment of China׳s wind power operation: Evolution, causes and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1190-1201.
    17. Kaldellis, J. K., 2002. "Optimum autonomous wind-power system sizing for remote consumers, using long-term wind speed data," Applied Energy, Elsevier, vol. 71(3), pages 215-233, March.
    18. Ye, Lin & Zhao, Yongning & Zeng, Cheng & Zhang, Cihang, 2017. "Short-term wind power prediction based on spatial model," Renewable Energy, Elsevier, vol. 101(C), pages 1067-1074.
    19. Aliari, Yashar & Haghani, Ali, 2016. "Planning for integration of wind power capacity in power generation using stochastic optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 907-919.
    20. Kaldellis, J.K., 2008. "The wind potential impact on the maximum wind energy penetration in autonomous electrical grids," Renewable Energy, Elsevier, vol. 33(7), pages 1665-1677.
    21. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadhan Gope & A. K. Goswami & P. K. Tiwari, 2020. "Transmission congestion management with integration of wind farm: a possible solution methodology for deregulated power market," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 287-296, April.
    2. Gaigalis, Vygandas & Katinas, Vladislovas, 2020. "Analysis of the renewable energy implementation and prediction prospects in compliance with the EU policy: A case of Lithuania," Renewable Energy, Elsevier, vol. 151(C), pages 1016-1027.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahid-Al-Masood, & Yan, Ruifeng & Saha, Tapan Kumar, 2015. "A new tool to estimate maximum wind power penetration level: In perspective of frequency response adequacy," Applied Energy, Elsevier, vol. 154(C), pages 209-220.
    2. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    3. Dong, Changgui & Qi, Ye & Dong, Wenjuan & Lu, Xi & Liu, Tianle & Qian, Shuai, 2018. "Decomposing driving factors for wind curtailment under economic new normal in China," Applied Energy, Elsevier, vol. 217(C), pages 178-188.
    4. Yongming Zhang & Zhe Yan & Li Li & Jiawei Yao, 2018. "A Hybrid Building Power Distribution System in Consideration of Supply and Demand-Side: A Short Overview and a Case Study," Energies, MDPI, vol. 11(11), pages 1-19, November.
    5. Sun, Bing & Yu, Yixin & Qin, Chao, 2017. "Should China focus on the distributed development of wind and solar photovoltaic power generation? A comparative study," Applied Energy, Elsevier, vol. 185(P1), pages 421-439.
    6. Zhang, Pan, 2019. "Do energy intensity targets matter for wind energy development? Identifying their heterogeneous effects in Chinese provinces with different wind resources," Renewable Energy, Elsevier, vol. 139(C), pages 968-975.
    7. Kaldellis, J.K. & Kapsali, M. & Kavadias, K.A., 2010. "Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks," Applied Energy, Elsevier, vol. 87(8), pages 2427-2437, August.
    8. Qiao, Qiao & Zeng, Xianhai & Lin, Boqiang, 2024. "Mitigating wind curtailment risk in China: The impact of subsidy reduction policy," Applied Energy, Elsevier, vol. 368(C).
    9. Xu, Fangqiu & Liu, Jicheng & Lin, Shuaishuai & Dai, Qiongjie & Li, Cunbin, 2018. "A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China," Energy, Elsevier, vol. 163(C), pages 585-603.
    10. Kaldellis, J.K. & Kapsali, M. & Tiligadas, D., 2012. "Presentation of a stochastic model estimating the wind energy contribution in remote island electrical networks," Applied Energy, Elsevier, vol. 97(C), pages 68-76.
    11. Drouineau, Mathilde & Maïzi, Nadia & Mazauric, Vincent, 2014. "Impacts of intermittent sources on the quality of power supply: The key role of reliability indicators," Applied Energy, Elsevier, vol. 116(C), pages 333-343.
    12. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    13. Kapsali, M. & Anagnostopoulos, J.S. & Kaldellis, J.K., 2012. "Wind powered pumped-hydro storage systems for remote islands: A complete sensitivity analysis based on economic perspectives," Applied Energy, Elsevier, vol. 99(C), pages 430-444.
    14. Wu, Geng & Wang, Haojing & Wu, Qingguo, 2020. "Wind power development in the Belt and Road area of Xinjiang, China: Problems and solutions," Utilities Policy, Elsevier, vol. 64(C).
    15. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    16. Tangerås, Thomas & Wolak, Frank A., 2019. "Locational Marginal Network Tariffs for Intermittent Renewable Generation," Working Paper Series 1310, Research Institute of Industrial Economics.
    17. Kumbuso Joshua Nyoni & Anesu Maronga & Paul Gerard Tuohy & Agabu Shane, 2021. "Hydro–Connected Floating PV Renewable Energy System and Onshore Wind Potential in Zambia," Energies, MDPI, vol. 14(17), pages 1-42, August.
    18. Zhang, Dayong & Zhang, Zhiwei & Ji, Qiang & Lucey, Brian & Liu, Jia, 2021. "Board characteristics, external governance and the use of renewable energy: International evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    19. Pablo Ledesma & Francisco Arredondo & Edgardo D. Castronuovo, 2017. "Optimal Curtailment of Non-Synchronous Renewable Generation on the Island of Tenerife Considering Steady State and Transient Stability Constraints," Energies, MDPI, vol. 10(11), pages 1-15, November.
    20. Conlon, Terence & Waite, Michael & Modi, Vijay, 2019. "Assessing new transmission and energy storage in achieving increasing renewable generation targets in a regional grid," Applied Energy, Elsevier, vol. 250(C), pages 1085-1098.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:647-662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.