IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v140y2017ip1p818-836.html
   My bibliography  Save this article

Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery

Author

Listed:
  • Yang, Min-Hsiung
  • Yeh, Rong-Hua
  • Hung, Tzu-Chen

Abstract

The aim of this study is to investigate the thermo-economic performance of the transcritical organic Rankine cycle (TORC) system using R1234yf/R32 mixtures as the working fluids for the lower-grade waste heat recovery (WHR). The components of R32 and R1234yf are selected due to their zero ozone depletion potential, lower global warming potential and complementary thermodynamic properties. The influences of the mass fractions of R1234yf/R32 mixtures, isentropic efficiencies of the expander, condensation temperature, turbine inlet pressure and temperature on performances have been investigated. The results show that R1234yf/R32 at optimal mass fraction is superior to pure R1234yf and pure R32 by 1.46% and 4.88% in thermo-economic performance, respectively. The optimal compositions of mixtures and the optimal temperature entropy diagrams are obtained to fit the various isentropic efficiencies possessed by the different types of expanders. In thermo-economic evaluation, the lower the condensation temperature is, the larger the optimal mass fraction of R32 in the mixtures will be. The increase of optimal expander inlet pressure and temperature are proportional to that of mass fraction of R32 in mixtures. The relationships among mass fraction, optimal expander inlet pressure and temperature and performance are expressed as the correlations for convenient design in lower-grade WHR.

Suggested Citation

  • Yang, Min-Hsiung & Yeh, Rong-Hua & Hung, Tzu-Chen, 2017. "Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 818-836.
  • Handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:818-836
    DOI: 10.1016/j.energy.2017.08.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217314378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
    2. Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2014. "Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids," Applied Energy, Elsevier, vol. 115(C), pages 394-404.
    3. Le, Van Long & Kheiri, Abdelhamid & Feidt, Michel & Pelloux-Prayer, Sandrine, 2014. "Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid," Energy, Elsevier, vol. 78(C), pages 622-638.
    4. Cayer, Emmanuel & Galanis, Nicolas & Desilets, Martin & Nesreddine, Hakim & Roy, Philippe, 2009. "Analysis of a carbon dioxide transcritical power cycle using a low temperature source," Applied Energy, Elsevier, vol. 86(7-8), pages 1055-1063, July.
    5. Yin, Hebi & Sabau, Adrian S. & Conklin, James C. & McFarlane, Joanna & Qualls, A. Lou, 2013. "Mixtures of SF6–CO2 as working fluids for geothermal power plants," Applied Energy, Elsevier, vol. 106(C), pages 243-253.
    6. Baik, Young-Jin & Kim, Minsung & Chang, Ki Chang & Kim, Sung Jin, 2011. "Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source," Applied Energy, Elsevier, vol. 88(3), pages 892-898, March.
    7. Chys, M. & van den Broek, M. & Vanslambrouck, B. & De Paepe, M., 2012. "Potential of zeotropic mixtures as working fluids in organic Rankine cycles," Energy, Elsevier, vol. 44(1), pages 623-632.
    8. Chen, Huijuan & Goswami, D. Yogi & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power," Energy, Elsevier, vol. 36(1), pages 549-555.
    9. Wang, J.L. & Zhao, L. & Wang, X.D., 2010. "A comparative study of pure and zeotropic mixtures in low-temperature solar Rankine cycle," Applied Energy, Elsevier, vol. 87(11), pages 3366-3373, November.
    10. Chen, Huijuan & Yogi Goswami, D. & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion," Applied Energy, Elsevier, vol. 88(8), pages 2802-2808, August.
    11. Le, Van Long & Feidt, Michel & Kheiri, Abdelhamid & Pelloux-Prayer, Sandrine, 2014. "Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids," Energy, Elsevier, vol. 67(C), pages 513-526.
    12. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
    13. Vélez, Fredy & Segovia, José & Chejne, Farid & Antolín, Gregorio & Quijano, Ana & Carmen Martín, M., 2011. "Low temperature heat source for power generation: Exhaustive analysis of a carbon dioxide transcritical power cycle," Energy, Elsevier, vol. 36(9), pages 5497-5507.
    14. Zhao, Li & Bao, Junjiang, 2014. "Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures," Applied Energy, Elsevier, vol. 130(C), pages 748-756.
    15. Jung, Hyung-Chul & Taylor, Leighton & Krumdieck, Susan, 2015. "An experimental and modelling study of a 1 kW organic Rankine cycle unit with mixture working fluid," Energy, Elsevier, vol. 81(C), pages 601-614.
    16. Li, You-Rong & Du, Mei-Tang & Wu, Chun-Mei & Wu, Shuang-Ying & Liu, Chao, 2014. "Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery," Energy, Elsevier, vol. 77(C), pages 509-519.
    17. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    18. Cayer, Emmanuel & Galanis, Nicolas & Nesreddine, Hakim, 2010. "Parametric study and optimization of a transcritical power cycle using a low temperature source," Applied Energy, Elsevier, vol. 87(4), pages 1349-1357, April.
    19. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Li, Xiaoya & Huang, Guangdai & Chang, Liwen, 2016. "An improved CO2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery," Applied Energy, Elsevier, vol. 176(C), pages 171-182.
    20. Yang, Min-Hsiung, 2016. "Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle," Energy, Elsevier, vol. 113(C), pages 1109-1124.
    21. Shu, Gequn & Gao, Yuanyuan & Tian, Hua & Wei, Haiqiao & Liang, Xingyu, 2014. "Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery," Energy, Elsevier, vol. 74(C), pages 428-438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yuankang & Deng, Zeyu & Yang, Jiaming & Hu, Yilun & Zhong, Kaifeng & Xie, Yubao & Ou, Zhihua & Guo, Shuting & Li, Xiaoning, 2024. "Performance analysis of a novel multimode electricity-cooling cogeneration system (ECCS) driven by exhaust from a marine engine," Energy, Elsevier, vol. 300(C).
    2. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    3. Zhang, Yifan & Ren, Xiao & Duan, Xinyue & Gong, Liang & Hung, Tzu-Chen, 2024. "Strategy for the zeotropic organic rankine cycle operation to match the heat sink variation," Energy, Elsevier, vol. 286(C).
    4. Yoonho, Lee, 2019. "LNG-FSRU cold energy recovery regasification using a zeotropic mixture of ethane and propane," Energy, Elsevier, vol. 173(C), pages 857-869.
    5. Lai, Xi & Zhao, Li & Nie, Xianhua & Zhang, Yue & Zhang, Qi, 2023. "Hydrate-based composition separation of R32/R1234yf mixed working fluids applied in composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 284(C).
    6. Sun, Dandan & Sun, Shoujun & Song, Qinglu & Wang, Dechang & Wang, Yunhua & Guo, Shuo, 2023. "Energy, exergy, economic and environmental (4E) analysis of two-stage cascade, Linder-Hampson and reverse Brayton systems in the temperature range from −120 °C to −60 °C," Energy, Elsevier, vol. 283(C).
    7. Yingjie Zhou & Junrong Tang & Cheng Zhang & Qibin Li, 2019. "Thermodynamic Analysis of the Air-Cooled Transcritical Rankine Cycle Using CO 2 /R161 Mixture Based on Natural Draft Dry Cooling Towers," Energies, MDPI, vol. 12(17), pages 1-17, August.
    8. Xiao, Chenglong & Hu, Zheng & Chen, Yongping & Zhang, Chengbin, 2024. "Thermodynamic, economic, exergoeconomic analysis of an integrated ocean thermal energy conversion system," Renewable Energy, Elsevier, vol. 225(C).
    9. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Tilia Dahou & Patrick Dutournié & Lionel Limousy & Simona Bennici & Nicolas Perea, 2019. "Recovery of Low-Grade Heat (Heat Waste) from a Cogeneration Unit for Woodchips Drying: Energy and Economic Analyses," Energies, MDPI, vol. 12(3), pages 1-17, February.
    11. Cai, Jinwen & Tian, Hua & Wang, Xuan & Wang, Rui & Shu, Gequn & Wang, Mingtao, 2021. "A calibrated organic Rankine cycle dynamic model applying to subcritical system and transcritical system," Energy, Elsevier, vol. 237(C).
    12. Hu, Shuozhuo & Li, Jian & Yang, Fubin & Yang, Zhen & Duan, Yuanyuan, 2020. "Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences," Energy, Elsevier, vol. 203(C).
    13. Juan J. García-Pabón & Dario Méndez-Méndez & Juan M. Belman-Flores & Juan M. Barroso-Maldonado & Ali Khosravi, 2021. "A Review of Recent Research on the Use of R1234yf as an Environmentally Friendly Fluid in the Organic Rankine Cycle," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    14. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    15. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    16. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2021. "Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems," Energy, Elsevier, vol. 228(C).
    17. Piyanut Saengsikhiao & Juntakan Taweekun & Kittinan Maliwan & Somchai Sae-ung & Thanansak Theppaya, 2020. "Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential," Energies, MDPI, vol. 13(6), pages 1-19, March.
    18. Zhang, Fei-yang & Feng, Yong-qiang & He, Zhi-xia & Xu, Jing-wei & Zhang, Qiang & Xu, Kang-jing, 2022. "Thermo-economic optimization of biomass-fired organic Rankine cycles combined heat and power system coupled CO2 capture with a rated power of 30 kW," Energy, Elsevier, vol. 254(PC).
    19. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    20. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    21. Rui Wang & Xuan Wang & Hua Tian & Gequn Shu & Jing Zhang & Yan Gao & Xingyan Bian, 2019. "Dynamic Performance Comparison of CO 2 Mixture Transcritical Power Cycle Systems with Variable Configurations for Engine Waste Heat Recovery," Energies, MDPI, vol. 13(1), pages 1-23, December.
    22. Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    3. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    4. Sánchez, Carlos J.N. & da Silva, Alexandre K., 2018. "Technical and environmental analysis of transcritical Rankine cycles operating with numerous CO2 mixtures," Energy, Elsevier, vol. 142(C), pages 180-190.
    5. Xia, Jiaxi & Wang, Jiangfeng & Zhou, Kehan & Zhao, Pan & Dai, Yiping, 2018. "Thermodynamic and economic analysis and multi-objective optimization of a novel transcritical CO2 Rankine cycle with an ejector driven by low grade heat source," Energy, Elsevier, vol. 161(C), pages 337-351.
    6. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
    7. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    8. Feng, Yongqiang & Hung, TzuChen & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings," Energy, Elsevier, vol. 93(P2), pages 2018-2029.
    9. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
    10. Liu, Qiang & Shen, Aijing & Duan, Yuanyuan, 2015. "Parametric optimization and performance analyses of geothermal organic Rankine cycles using R600a/R601a mixtures as working fluids," Applied Energy, Elsevier, vol. 148(C), pages 410-420.
    11. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    12. Li, Jian & Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2017. "Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation," Applied Energy, Elsevier, vol. 190(C), pages 376-389.
    13. Miao, Zheng & Zhang, Kai & Wang, Mengxiao & Xu, Jinliang, 2019. "Thermodynamic selection criteria of zeotropic mixtures for subcritical organic Rankine cycle," Energy, Elsevier, vol. 167(C), pages 484-497.
    14. Sun, Xiaocun & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Yao, Yu & Sun, Rui & Shu, Gequn, 2022. "Analysis of an ideal composition tunable combined cooling and power cycle with CO2-based mixture," Energy, Elsevier, vol. 255(C).
    15. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    16. Li, You-Rong & Du, Mei-Tang & Wu, Chun-Mei & Wu, Shuang-Ying & Liu, Chao, 2014. "Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery," Energy, Elsevier, vol. 77(C), pages 509-519.
    17. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
    18. Bamorovat Abadi, Gholamreza & Yun, Eunkoo & Kim, Kyung Chun, 2015. "Experimental study of a 1 kw organic Rankine cycle with a zeotropic mixture of R245fa/R134a," Energy, Elsevier, vol. 93(P2), pages 2363-2373.
    19. Kajurek, Jakub & Rusowicz, Artur & Grzebielec, Andrzej & Bujalski, Wojciech & Futyma, Kamil & Rudowicz, Zbigniew, 2019. "Selection of refrigerants for a modified organic Rankine cycle," Energy, Elsevier, vol. 168(C), pages 1-8.
    20. Braimakis, Konstantinos & Mikelis, Angelos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:818-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.