Dynamic Performance Comparison of CO 2 Mixture Transcritical Power Cycle Systems with Variable Configurations for Engine Waste Heat Recovery
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zegenhagen, M.T. & Ziegler, F., 2015. "Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines," Applied Energy, Elsevier, vol. 160(C), pages 221-230.
- Lion, Simone & Michos, Constantine N. & Vlaskos, Ioannis & Rouaud, Cedric & Taccani, Rodolfo, 2017. "A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 691-708.
- Lingfeng Shi & Gequn Shu & Hua Tian & Guangdai Huang & Liwen Chang & Tianyu Chen & Xiaoya Li, 2017. "Ideal Point Design and Operation of CO 2 -Based Transcritical Rankine Cycle (CTRC) System Based on High Utilization of Engine’s Waste Heats," Energies, MDPI, vol. 10(11), pages 1-21, October.
- Shu, Gequn & Shi, Lingfeng & Tian, Hua & Li, Xiaoya & Huang, Guangdai & Chang, Liwen, 2016. "An improved CO2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery," Applied Energy, Elsevier, vol. 176(C), pages 171-182.
- Li, Xiaoya & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Huang, Guangdai & Chen, Tianyu & Liu, Peng, 2017. "Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 696-707.
- Manente, Giovanni & Toffolo, Andrea & Lazzaretto, Andrea & Paci, Marco, 2013. "An Organic Rankine Cycle off-design model for the search of the optimal control strategy," Energy, Elsevier, vol. 58(C), pages 97-106.
- Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
- Shu, Gequn & Wang, Xuan & Tian, Hua & Liu, Peng & Jing, Dongzhan & Li, Xiaoya, 2017. "Scan of working fluids based on dynamic response characters for Organic Rankine Cycle using for engine waste heat recovery," Energy, Elsevier, vol. 133(C), pages 609-620.
- Yang, Min-Hsiung & Yeh, Rong-Hua & Hung, Tzu-Chen, 2017. "Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 818-836.
- Horst, Tilmann Abbe & Rottengruber, Hermann-Sebastian & Seifert, Marco & Ringler, Jürgen, 2013. "Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems," Applied Energy, Elsevier, vol. 105(C), pages 293-303.
- Wang, Xuan & Shu, Gequn & Tian, Hua & Liu, Peng & Jing, Dongzhan & Li, Xiaoya, 2018. "The effects of design parameters on the dynamic behavior of organic ranking cycle for the engine waste heat recovery," Energy, Elsevier, vol. 147(C), pages 440-450.
- Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
- Xie, Hui & Yang, Can, 2013. "Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle," Applied Energy, Elsevier, vol. 112(C), pages 130-141.
- Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lu, Bowen & Zhang, Zhifu & Cai, Jinwen & Wang, Wei & Ju, Xueming & Xu, Yao & Lu, Xun & Tian, Hua & Shi, Lingfeng & Shu, Gequn, 2023. "Integrating engine thermal management into waste heat recovery under steady-state design and dynamic off-design conditions," Energy, Elsevier, vol. 272(C).
- Wang, Rui & Wang, Xuan & Shu, Gequn & Tian, Hua & Cai, Jinwen & Bian, Xingyan & Li, Xinyu & Qin, Zheng & Shi, Lingfeng, 2022. "Comparison of different load-following control strategies of a sCO2 Brayton cycle under full load range," Energy, Elsevier, vol. 246(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xiaoya & Tian, Hua & Shu, Gequn & Zhao, Mingru & Markides, Christos N. & Hu, Chen, 2019. "Potential of carbon dioxide transcritical power cycle waste-heat recovery systems for heavy-duty truck engines," Applied Energy, Elsevier, vol. 250(C), pages 1581-1599.
- Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
- Li, Xiaoya & Tian, Hua & Shu, Gequn & Hu, Chen & Sun, Rui & Li, Ligeng, 2018. "Effects of external perturbations on dynamic performance of carbon dioxide transcritical power cycles for truck engine waste heat recovery," Energy, Elsevier, vol. 163(C), pages 920-931.
- Huang, Guangdai & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Zhuge, Weilin & Zhang, Jing & Atik, Mohammad Atikur Rahman, 2020. "Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery," Applied Energy, Elsevier, vol. 257(C).
- Li, Xiaoya & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Huang, Guangdai & Chen, Tianyu & Liu, Peng, 2017. "Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 696-707.
- Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
- Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
- Vaupel, Yannic & Huster, Wolfgang R. & Mhamdi, Adel & Mitsos, Alexander, 2021. "Optimal operating policies for organic Rankine cycles for waste heat recovery under transient conditions," Energy, Elsevier, vol. 224(C).
- Xuan Wang & Hua Tian & Gequn Shu, 2016. "Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines," Energies, MDPI, vol. 9(7), pages 1-21, July.
- Shi, Lingfeng & Shu, Gequn & Tian, Hua & Chen, Tianyu & Liu, Peng & Li, Ligeng, 2019. "Dynamic tests of CO2-Based waste heat recovery system with preheating process," Energy, Elsevier, vol. 171(C), pages 270-283.
- Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
- Shu, Gequn & Wang, Rui & Tian, Hua & Wang, Xuan & Li, Xiaoya & Cai, Jinwen & Xu, Zhiqiang, 2020. "Dynamic performance of the transcritical power cycle using CO2-based binary zeotropic mixtures for truck engine waste heat recovery," Energy, Elsevier, vol. 194(C).
- Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
- Zhou, Xia & Zhang, Hanwei & Fang, Song & Rong, Yangyiming & Xu, Zhuoren & Jiang, Hanying & Wang, Kai & Zhi, Xiaoqin & Qiu, Limin, 2022. "Off-design performance analysis with various operation methods for ORC-based compression heat recovery system in cryogenic air separation units," Energy, Elsevier, vol. 261(PB).
- Shi, Lingfeng & Shu, Gequn & Tian, Hua & Huang, Guangdai & Li, Xiaoya & Chen, Tianyu & Li, Ligeng, 2018. "Experimental investigation of a CO2-based Transcritical Rankine Cycle (CTRC) for exhaust gas recovery," Energy, Elsevier, vol. 165(PB), pages 1149-1159.
- Hernandez, Andres & Desideri, Adriano & Gusev, Sergei & Ionescu, Clara M. & Den Broek, Martijn Van & Quoilin, Sylvain & Lemort, Vincent & De Keyser, Robin, 2017. "Design and experimental validation of an adaptive control law to maximize the power generation of a small-scale waste heat recovery system," Applied Energy, Elsevier, vol. 203(C), pages 549-559.
- Cai, Jinwen & Tian, Hua & Wang, Xuan & Wang, Rui & Shu, Gequn & Wang, Mingtao, 2021. "A calibrated organic Rankine cycle dynamic model applying to subcritical system and transcritical system," Energy, Elsevier, vol. 237(C).
- Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
- Shi, Rongqi & He, Tianqi & Peng, Jie & Zhang, Yangjun & Zhuge, Weilin, 2016. "System design and control for waste heat recovery of automotive engines based on Organic Rankine Cycle," Energy, Elsevier, vol. 102(C), pages 276-286.
More about this item
Keywords
CO 2 mixture transcritical power cycle (CMTPC); dynamic performance; sensitivity analysis; waste heat recovery;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:32-:d:299952. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.