IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v85y2008i8p755-764.html
   My bibliography  Save this article

A parametric study on the emissions from an HCCI alternative combustion engine resulting from the auto-ignition of primary reference fuels

Author

Listed:
  • Machrafi, Hatim
  • Cavadias, Simeon
  • Amouroux, Jacques

Abstract

The homogeneous charge compression ignition is an alternative combustion technology that can reduce automobile pollution, provided that the exhaust emission can be controlled. A parametric study can be useful in order to gain more understanding in the emission reduction possibilities via this new combustion technology. For this purpose, the inlet temperature, the equivalence ratio and the compression ratio are changed, respectively, from 30 to 70 °C, 0.28 to 0.41 and 6 to 14. Also the diluting, thermal and chemical effects of exhaust gas recirculation were studied. The emission of CO, CO2, O2 and hydrocarbons has been measured using primary reference fuels. It appears that an increase in the inlet temperature, the EGR temperature, the equivalence ratio and the compression ratio results into a decrease of the emissions of CO and the hydrocarbons of up to 75%. The emission of CO2 increased, however, by 50%. The chemical parameters showed more complicated effects, resulting into a decrease or increase of the emissions, depending on whether the overall reactivity increased or not. If the reactivity increased, generally, the emissions of CO and hydrocarbons increased, while that of CO2 increased. The increase of CO2 emissions could be compensated by altering the compression ratio and the EGR parameters, making it possible to control the emission of the HCCI engine.

Suggested Citation

  • Machrafi, Hatim & Cavadias, Simeon & Amouroux, Jacques, 2008. "A parametric study on the emissions from an HCCI alternative combustion engine resulting from the auto-ignition of primary reference fuels," Applied Energy, Elsevier, vol. 85(8), pages 755-764, August.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:8:p:755-764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00035-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:8:p:755-764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.