A dynamic model for the bed temperature prediction of circulating fluidized bed boilers based on least squares support vector machine with real operational data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.02.031
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Salim, Reem & Nabag, Mahmoud & Noura, Hassan & Fardoun, Abbas, 2015. "The parameter identification of the Nexa 1.2 kW PEMFC's model using particle swarm optimization," Renewable Energy, Elsevier, vol. 82(C), pages 26-34.
- Smrekar, J. & Assadi, M. & Fast, M. & Kuštrin, I. & De, S., 2009. "Development of artificial neural network model for a coal-fired boiler using real plant data," Energy, Elsevier, vol. 34(2), pages 144-152.
- Liukkonen, Mika & Hälikkä, Eero & Hiltunen, Teri & Hiltunen, Yrjö, 2012. "Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler," Applied Energy, Elsevier, vol. 97(C), pages 483-490.
- Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.
- Liukkonen, M. & Hiltunen, T., 2014. "Adaptive monitoring of emissions in energy boilers using self-organizing maps: An application to a biomass-fired CFB (circulating fluidized bed)," Energy, Elsevier, vol. 73(C), pages 443-452.
- Stoppato, Anna & Cavazzini, Giovanna & Ardizzon, Guido & Rossetti, Antonio, 2014. "A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area," Energy, Elsevier, vol. 76(C), pages 168-174.
- Smrekar, J. & Potočnik, P. & Senegačnik, A., 2013. "Multi-step-ahead prediction of NOx emissions for a coal-based boiler," Applied Energy, Elsevier, vol. 106(C), pages 89-99.
- Bolea, Irene & Romeo, Luis M. & Pallarés, David, 2012. "The role of external heat exchangers in oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 94(C), pages 215-223.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Zhou, Taotao & Tang, Peng & Ye, Taohong, 2023. "Machine learning based heat release rate indicator of premixed methane/air flame under wide range of equivalence ratio," Energy, Elsevier, vol. 263(PE).
- Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
- Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
- Tang, Zhenhao & Wang, Shikui & Li, Yue, 2024. "Dynamic NOX emission concentration prediction based on the combined feature selection algorithm and deep neural network," Energy, Elsevier, vol. 292(C).
- Chuanpeng Zhu & Pu Huang & Yiguo Li, 2022. "Closed-Loop Combustion Optimization Based on Dynamic and Adaptive Models with Application to a Coal-Fired Boiler," Energies, MDPI, vol. 15(14), pages 1-16, July.
- Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
- Zhuo, Xusheng & Lou, Chun & Zhou, Huaichun & Zhuo, Jinxuan & Fu, Peifang, 2018. "Hierarchical Takagi-Sugeno fuzzy hyperbolic tangent static model control for a circulating fluidized bed boiler thermal power unit," Energy, Elsevier, vol. 162(C), pages 910-917.
- Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2020. "A least-squares support vector machine method for modeling transient voltage in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 271(C).
- Yu, Haoyang & Gao, Mingming & Zhang, Hongfu & Yue, Guangxi & Zhang, Zhen, 2023. "Data-driven optimization of pollutant emission and operational efficiency for circulating fluidized bed unit," Energy, Elsevier, vol. 281(C).
- Fan Zhang & Yali Xue & Donghai Li & Zhenlong Wu & Ting He, 2019. "On the Flexible Operation of Supercritical Circulating Fluidized Bed: Burning Carbon Based Decentralized Active Disturbance Rejection Control," Energies, MDPI, vol. 12(6), pages 1-18, March.
- Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
- Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
- Navarkar, Abhishek & Hasti, Veeraraghava Raju & Deneke, Elihu & Gore, Jay P., 2020. "A data-driven model for thermodynamic properties of a steam generator under cycling operation," Energy, Elsevier, vol. 211(C).
- Zheng, Wei & Wang, Chao & Yang, Yajun & Zhang, Yongfei, 2020. "Multi-objective combustion optimization based on data-driven hybrid strategy," Energy, Elsevier, vol. 191(C).
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
- Peng, Gongzhuang & Wang, Hongwei & Song, Xiao & Zhang, Heming, 2017. "Intelligent management of coal stockpiles using improved grey spontaneous combustion forecasting models," Energy, Elsevier, vol. 132(C), pages 269-279.
- Li, Qingwei & Yao, Guihuan, 2017. "Improved coal combustion optimization model based on load balance and coal qualities," Energy, Elsevier, vol. 132(C), pages 204-212.
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Zhenhao Tang & Xiaoyan Wu & Shengxian Cao, 2019. "Adaptive Nonlinear Model Predictive Control of the Combustion Efficiency under the NOx Emissions and Load Constraints," Energies, MDPI, vol. 12(9), pages 1-16, May.
- Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
- Ögren, Yngve & Tóth, Pál & Garami, Attila & Sepman, Alexey & Wiinikka, Henrik, 2018. "Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors," Applied Energy, Elsevier, vol. 226(C), pages 450-460.
- Ding, Xiaosong & Feng, Chong & Yu, Peiling & Li, Kaiwen & Chen, Xi, 2023. "Gradient boosting decision tree in the prediction of NOx emission of waste incineration," Energy, Elsevier, vol. 264(C).
- Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
- Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
- Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
- Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
- Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
- Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
- Yang, Dan & Peng, Xin & Ye, Zhencheng & Lu, Yusheng & Zhong, Weimin, 2021. "Domain adaptation network with uncertainty modeling and its application to the online energy consumption prediction of ethylene distillation processes," Applied Energy, Elsevier, vol. 303(C).
More about this item
Keywords
Bed temperature; Dynamic model; Least squares support vector machine; Circulating fluidized bed boiler; Operational data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:124:y:2017:i:c:p:284-294. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.