IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222029899.html
   My bibliography  Save this article

Machine learning based heat release rate indicator of premixed methane/air flame under wide range of equivalence ratio

Author

Listed:
  • Zhou, Taotao
  • Tang, Peng
  • Ye, Taohong

Abstract

Heat release rate (HRR) is an essential parameter of describing and monitoring combustion phenomenon, which has intricate spatial and temporal distributions. Proper evaluation of the performance of combustion systems require accurate determination of local HRR, while it cannot be directly measured in practical combustion field. At present, it's still a difficult issue to find a generally-accurate HRR indicator for wide range of equivalence ratios. In this work, machine learning methods are adopted to find and construct HRR indicator of premixed methane/air flames at lean-to-stoichiometric condition. First, Typical conventional HRR indicators are evaluated. Then, three types of machine learning methods, artificial neural network algorithm, support vector regression, multiple linear regression, are used to construct new HRR models and the accuracies are evaluated. Multiple linear regression algorithm is ultimately recommended for constructing HRR models, due to its high prediction accuracy, the lowest model complexity and simplicity of parameter adjustment. Finally, a third-order multiple linear regression model based on radical CH3 and O is proposed and recommended as HRR indicator, which has high accuracy under different temperature and lean-to-stoichiometric condition.

Suggested Citation

  • Zhou, Taotao & Tang, Peng & Ye, Taohong, 2023. "Machine learning based heat release rate indicator of premixed methane/air flame under wide range of equivalence ratio," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029899
    DOI: 10.1016/j.energy.2022.126103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222029899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zuming & Karimi, Iftekhar A., 2020. "Gas turbine performance prediction via machine learning," Energy, Elsevier, vol. 192(C).
    2. Wei, Z.L. & Leung, C.W. & Cheung, C.S. & Huang, Z.H., 2017. "Single-valued prediction of markers on heat release rate for laminar premixed biogas-hydrogen and methane-hydrogen flames," Energy, Elsevier, vol. 133(C), pages 35-45.
    3. Lv, You & Hong, Feng & Yang, Tingting & Fang, Fang & Liu, Jizhen, 2017. "A dynamic model for the bed temperature prediction of circulating fluidized bed boilers based on least squares support vector machine with real operational data," Energy, Elsevier, vol. 124(C), pages 284-294.
    4. Ma, Yunpeng & Niu, Peifeng & Yan, Shanshan & Li, Guoqiang, 2018. "A modified online sequential extreme learning machine for building circulation fluidized bed boiler's NOx emission model," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 214-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Shuai & Gong, Yan & Duan, Zhengqiao & Guo, Qinghua & Yu, Guangsuo, 2023. "Investigation of the correlation between OH*, CH* chemiluminescence and heat release rate in methane inverse diffusion flame," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    2. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    3. Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).
    4. Li, Yunzhu & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Deep learning based real-time energy extraction system modeling for flapping foil," Energy, Elsevier, vol. 246(C).
    5. Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
    6. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    7. Masood, Zahid & Khan, Shahroz & Qian, Li, 2021. "Machine learning-based surrogate model for accelerating simulation-driven optimisation of hydropower Kaplan turbine," Renewable Energy, Elsevier, vol. 173(C), pages 827-848.
    8. Jiang, Chiju & Zhang, Weihao & Li, Ya & Li, Lele & Wang, Yufan & Huang, Dongming, 2023. "Multi-scale Pix2Pix network for high-fidelity prediction of adiabatic cooling effectiveness in turbine cascade," Energy, Elsevier, vol. 265(C).
    9. Grochowalski, Jaroslaw & Jachymek, Piotr & Andrzejczyk, Marek & Klajny, Marcin & Widuch, Agata & Morkisz, Pawel & Hernik, Bartłomiej & Zdeb, Janusz & Adamczyk, Wojciech, 2021. "Towards application of machine learning algorithms for prediction temperature distribution within CFB boiler based on specified operating conditions," Energy, Elsevier, vol. 237(C).
    10. Yu, Haoyang & Gao, Mingming & Zhang, Hongfu & Yue, Guangxi & Zhang, Zhen, 2023. "Data-driven optimization of pollutant emission and operational efficiency for circulating fluidized bed unit," Energy, Elsevier, vol. 281(C).
    11. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
    12. Du, Qiuwan & Li, Yunzhu & Yang, Like & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Performance prediction and design optimization of turbine blade profile with deep learning method," Energy, Elsevier, vol. 254(PA).
    13. Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
    14. Martí de Castro-Cros & Manel Velasco & Cecilio Angulo, 2021. "Machine-Learning-Based Condition Assessment of Gas Turbines—A Review," Energies, MDPI, vol. 14(24), pages 1-27, December.
    15. Szega, Marcin & Żymełka, Piotr & Janda, Tomasz, 2022. "Improving the accuracy of electricity and heat production forecasting in a supervision computer system of a selected gas-fired CHP plant operation," Energy, Elsevier, vol. 239(PE).
    16. Yuansheng, Huang & Mengshu, Shi, 2021. "What are the environmental advantages of circulating fluidized bed technology? ——A case study in China," Energy, Elsevier, vol. 220(C).
    17. Du, Qiuwan & Yang, Like & Li, Liangliang & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Aerodynamic design and optimization of blade end wall profile of turbomachinery based on series convolutional neural network," Energy, Elsevier, vol. 244(PA).
    18. Yunpeng Ma & Chenheng Xu & Hua Wang & Ran Wang & Shilin Liu & Xiaoying Gu, 2022. "Model NOx, SO 2 Emissions Concentration and Thermal Efficiency of CFBB Based on a Hyper-Parameter Self-Optimized Broad Learning System," Energies, MDPI, vol. 15(20), pages 1-19, October.
    19. Díez Valbuena, G. & García Tuero, A. & Díez, J. & Rodríguez, E. & Hernández Battez, A., 2024. "Application of machine learning techniques to predict biodiesel iodine value," Energy, Elsevier, vol. 292(C).
    20. Li, Jinxing & Liu, Tianyuan & Wang, Yuqi & Xie, Yonghui, 2022. "Integrated graph deep learning framework for flow field reconstruction and performance prediction of turbomachinery," Energy, Elsevier, vol. 254(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.