IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1738-d229168.html
   My bibliography  Save this article

Adaptive Nonlinear Model Predictive Control of the Combustion Efficiency under the NOx Emissions and Load Constraints

Author

Listed:
  • Zhenhao Tang

    (School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Xiaoyan Wu

    (School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Shengxian Cao

    (School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China)

Abstract

A data-driven modeling method with feature selection capability is proposed for the combustion process of a station boiler under multi-working conditions to derive a nonlinear optimization model for the boiler combustion efficiency under various working conditions. In this approach, the principal component analysis method is employed to reconstruct new variables as the input of the predictive model, reduce the over-fitting of data and improve modeling accuracy. Then, a k-nearest neighbors algorithm is used to classify the samples to distinguish the data by the different operating conditions. Based on the classified data, a least square support vector machine optimized by the differential evolution algorithm is established. Based on the boiler key parameter model, the proposed model attempts to maximize the combustion efficiency under the boiler load constraints, the nitrogen oxide (NOx) emissions constraints and the boundary constraints. The experimental results based on the actual production data, as well as the comparative analysis demonstrate: (1) The predictive model can accurately predict the boiler key parameters and meet the demands of boiler combustion process control and optimization; (2) The model predictive control algorithm can effectively control the boiler combustion efficiency, the average errors of simulation are less than 5%. The proposed model predictive control method can improve the quality of production, reduce energy consumption, and lay the foundation for enterprises to achieve high efficiency and low emission.

Suggested Citation

  • Zhenhao Tang & Xiaoyan Wu & Shengxian Cao, 2019. "Adaptive Nonlinear Model Predictive Control of the Combustion Efficiency under the NOx Emissions and Load Constraints," Energies, MDPI, vol. 12(9), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1738-:d:229168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1738/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liukkonen, Mika & Hälikkä, Eero & Hiltunen, Teri & Hiltunen, Yrjö, 2012. "Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler," Applied Energy, Elsevier, vol. 97(C), pages 483-490.
    2. Fan, He & Zhang, Yu-fei & Su, Zhi-gang & Wang, Ben, 2017. "A dynamic mathematical model of an ultra-supercritical coal fired once-through boiler-turbine unit," Applied Energy, Elsevier, vol. 189(C), pages 654-666.
    3. Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
    2. Lv, You & Hong, Feng & Yang, Tingting & Fang, Fang & Liu, Jizhen, 2017. "A dynamic model for the bed temperature prediction of circulating fluidized bed boilers based on least squares support vector machine with real operational data," Energy, Elsevier, vol. 124(C), pages 284-294.
    3. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    4. Zheng, Wei & Wang, Chao & Yang, Yajun & Zhang, Yongfei, 2020. "Multi-objective combustion optimization based on data-driven hybrid strategy," Energy, Elsevier, vol. 191(C).
    5. Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
    6. Yang, Dan & Peng, Xin & Ye, Zhencheng & Lu, Yusheng & Zhong, Weimin, 2021. "Domain adaptation network with uncertainty modeling and its application to the online energy consumption prediction of ethylene distillation processes," Applied Energy, Elsevier, vol. 303(C).
    7. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    8. Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
    9. Omar Mohamed & Ashraf Khalil & Jihong Wang, 2020. "Modeling and Control of Supercritical and Ultra-Supercritical Power Plants: A Review," Energies, MDPI, vol. 13(11), pages 1-23, June.
    10. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    11. Huang, Congzhi & Sheng, Xinxin, 2020. "Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm," Energy, Elsevier, vol. 205(C).
    12. Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
    13. Dashti, Amir & Noushabadi, Abolfazl Sajadi & Asadi, Javad & Raji, Mojtaba & Chofreh, Abdoulmohammad Gholamzadeh & Klemeš, Jiří Jaromír & Mohammadi, Amir H., 2021. "Review of higher heating value of municipal solid waste based on analysis and smart modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.
    15. Zhou, Hong & Chen, Cheng & Lai, Jingang & Lu, Xiaoqing & Deng, Qijun & Gao, Xingran & Lei, Zhongcheng, 2018. "Affine nonlinear control for an ultra-supercritical coal fired once-through boiler-turbine unit," Energy, Elsevier, vol. 153(C), pages 638-649.
    16. Hübel, Moritz & Meinke, Sebastian & Andrén, Marcus T. & Wedding, Christoffer & Nocke, Jürgen & Gierow, Conrad & Hassel, Egon & Funkquist, Jonas, 2017. "Modelling and simulation of a coal-fired power plant for start-up optimisation," Applied Energy, Elsevier, vol. 208(C), pages 319-331.
    17. Navarkar, Abhishek & Hasti, Veeraraghava Raju & Deneke, Elihu & Gore, Jay P., 2020. "A data-driven model for thermodynamic properties of a steam generator under cycling operation," Energy, Elsevier, vol. 211(C).
    18. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    19. Han, Zhezhe & Tang, Xiaoyu & Xie, Yue & Liang, Ruiyu & Bao, Yongqiang, 2024. "Prediction of heavy-oil combustion emissions with a semi-supervised learning model considering variable operation conditions," Energy, Elsevier, vol. 288(C).
    20. Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1738-:d:229168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.