Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.122449
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992.
"Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?,"
Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
- Kwiatkowski, D. & Phillips, P.C.B. & Schmidt, P., 1990. "Testing the Null Hypothesis of Stationarity Against the Alternative of Unit Root : How Sure are we that Economic Time Series have a Unit Root?," Papers 8905, Michigan State - Econometrics and Economic Theory.
- Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
- Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Nikula, Riku-Pekka & Ruusunen, Mika & Leiviskä, Kauko, 2016. "Data-driven framework for boiler performance monitoring," Applied Energy, Elsevier, vol. 183(C), pages 1374-1388.
- Wang, Guoyang & Awad, Omar I. & Liu, Shiyu & Shuai, Shijin & Wang, Zhiming, 2020. "NOx emissions prediction based on mutual information and back propagation neural network using correlation quantitative analysis," Energy, Elsevier, vol. 198(C).
- Hundi, Prabhas & Shahsavari, Rouzbeh, 2020. "Comparative studies among machine learning models for performance estimation and health monitoring of thermal power plants," Applied Energy, Elsevier, vol. 265(C).
- Madejski, Paweł & Żymełka, Piotr, 2020. "Calculation methods of steam boiler operation factors under varying operating conditions with the use of computational thermodynamic modeling," Energy, Elsevier, vol. 197(C).
- Changqing Cheng & Akkarapol Sa-Ngasoongsong & Omer Beyca & Trung Le & Hui Yang & Zhenyu (James) Kong & Satish T.S. Bukkapatnam, 2015. "Time series forecasting for nonlinear and non-stationary processes: a review and comparative study," IISE Transactions, Taylor & Francis Journals, vol. 47(10), pages 1053-1071, October.
- Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
- Guo, Sisi & Liu, Pei & Li, Zheng, 2018. "Enhancement of performance monitoring of a coal-fired power plant via dynamic data reconciliation," Energy, Elsevier, vol. 151(C), pages 203-210.
- Madejski, Paweł & Taler, Dawid & Taler, Jan, 2019. "Modeling of transient operation of steam superheater in CFB boiler," Energy, Elsevier, vol. 182(C), pages 965-974.
- Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
- Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
- Hu, Jiefeng & Shan, Yinghao & Guerrero, Josep M. & Ioinovici, Adrian & Chan, Ka Wing & Rodriguez, Jose, 2021. "Model predictive control of microgrids – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
- Nguyen, Hoang-Phuong & Baraldi, Piero & Zio, Enrico, 2021. "Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants," Applied Energy, Elsevier, vol. 283(C).
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Trojan, Marcin, 2019. "Modeling of a steam boiler operation using the boiler nonlinear mathematical model," Energy, Elsevier, vol. 175(C), pages 1194-1208.
- Sunil, P.U. & Barve, Jayesh & Nataraj, P.S.V., 2017. "Mathematical modeling, simulation and validation of a boiler drum: Some investigations," Energy, Elsevier, vol. 126(C), pages 312-325.
- Kong, Xiaobing & Liu, Xiangjie & Lee, Kwang Y., 2015. "Nonlinear multivariable hierarchical model predictive control for boiler-turbine system," Energy, Elsevier, vol. 93(P1), pages 309-322.
- Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
- Huang, Congzhi & Sheng, Xinxin, 2020. "Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm," Energy, Elsevier, vol. 205(C).
- Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & de Gracia, Alvaro & Cabeza, Luisa F., 2021. "Systematic review on model predictive control strategies applied to active thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Lv, You & Hong, Feng & Yang, Tingting & Fang, Fang & Liu, Jizhen, 2017. "A dynamic model for the bed temperature prediction of circulating fluidized bed boilers based on least squares support vector machine with real operational data," Energy, Elsevier, vol. 124(C), pages 284-294.
- Hong, Feng & Long, Dongteng & Chen, Jiyu & Gao, Mingming, 2020. "Modeling for the bed temperature 2D-interval prediction of CFB boilers based on long-short term memory network," Energy, Elsevier, vol. 194(C).
- Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
- Satyavada, Harish & Baldi, Simone, 2018. "Monitoring energy efficiency of condensing boilers via hybrid first-principle modelling and estimation," Energy, Elsevier, vol. 142(C), pages 121-129.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xue, Wenyuan & Tang, Zhenhao & Cao, Shengxian & Lv, Manli & Zhao, Bo & Wang, Gong, 2024. "A novel online method incorporating computational fluid dynamics simulations and neural networks for reconstructing temperature field distributions in coal-fired boilers," Energy, Elsevier, vol. 286(C).
- Li, Guolong & Li, Yanjun & Fang, Chengyue & Su, Jian & Wang, Haotong & Sun, Shengdi & Zhang, Guolei & Shi, Jianxin, 2023. "Research on fault diagnosis of supercharged boiler with limited data based on few-shot learning," Energy, Elsevier, vol. 281(C).
- Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
- Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fan, Yuchen & Liu, Xin & Zhang, Chaoqun & Li, Chi & Li, Xinying & Wang, Heyang, 2024. "Dynamic prediction of boiler NOx emission with graph convolutional gated recurrent unit model optimized by genetic algorithm," Energy, Elsevier, vol. 294(C).
- Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
- Yu, Haoyang & Gao, Mingming & Zhang, Hongfu & Yue, Guangxi & Zhang, Zhen, 2023. "Data-driven optimization of pollutant emission and operational efficiency for circulating fluidized bed unit," Energy, Elsevier, vol. 281(C).
- Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
- Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
- Tang, Zhenhao & Wang, Shikui & Li, Yue, 2024. "Dynamic NOX emission concentration prediction based on the combined feature selection algorithm and deep neural network," Energy, Elsevier, vol. 292(C).
- Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
- Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Chong, Daotong & Yan, Junjie, 2020. "Entropy generation distribution characteristics of a supercritical boiler superheater during transient processes," Energy, Elsevier, vol. 201(C).
- Wang, Zhimin & Huang, Qian & Liu, Guanqing & Wang, Kexuan & Lyu, Junfu & Li, Shuiqing, 2024. "Knowledge-inspired data-driven prediction of overheating risks in flexible thermal-power plants," Applied Energy, Elsevier, vol. 364(C).
- Ding, Xiaosong & Feng, Chong & Yu, Peiling & Li, Kaiwen & Chen, Xi, 2023. "Gradient boosting decision tree in the prediction of NOx emission of waste incineration," Energy, Elsevier, vol. 264(C).
- Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
- Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
- Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
- Xu, Jing & Cui, Zhipeng & Ma, Suxia & Wang, Xiaowei & Zhang, Zhiyao & Zhang, Guoxia, 2024. "Data based digital twin for operational performance optimization in CFB boilers," Energy, Elsevier, vol. 306(C).
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
- Chandrasekharan, Sreepradha & Panda, Rames C. & Swaminathan, Bhuvaneswari Natrajan & Panda, Atanu, 2018. "Operational control of an integrated drum boiler of a coal fired thermal power plant," Energy, Elsevier, vol. 159(C), pages 977-987.
- Yılmaz, Semih & Kumlutaş, Dilek & Yücekaya, Utku Alp & Cumbul, Ahmet Yakup, 2021. "Prediction of the equilibrium compositions in the combustion products of a domestic boiler," Energy, Elsevier, vol. 233(C).
- Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
- Wang, Zhihong & Luo, Kangwei & Yu, Hongsen & Feng, Kai & Ding, Hang, 2024. "NOx Emission prediction of heavy-duty diesel vehicles based on Bayesian optimization -Gated Recurrent Unit algorithm," Energy, Elsevier, vol. 292(C).
More about this item
Keywords
Short-term forecasting; Locally weighted regression; Differencing; CNN; Sensitivity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026980. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.