Enhancing the load ramp-up capability of the subcritical CFB power unit by considering the evolution of internal stored energy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.132571
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Chaoyang & Liu, Ming & Li, Bingxin & Liu, Yiwen & Yan, Junjie, 2017. "Thermodynamic analysis on the transient cycling of coal-fired power plants: Simulation study of a 660 MW supercritical unit," Energy, Elsevier, vol. 122(C), pages 505-527.
- Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
- Liu, Zefeng & Wang, Chaoyang & Fan, Jianlin & Liu, Ming & Xing, Yong & Yan, Junjie, 2024. "Enhancing the flexibility and stability of coal-fired power plants by optimizing control schemes of throttling high-pressure extraction steam," Energy, Elsevier, vol. 288(C).
- Li, Jianglong & Ho, Mun Sing & Xie, Chunping & Stern, Nicholas, 2022. "China's flexibility challenge in achieving carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Lv, You & Hong, Feng & Yang, Tingting & Fang, Fang & Liu, Jizhen, 2017. "A dynamic model for the bed temperature prediction of circulating fluidized bed boilers based on least squares support vector machine with real operational data," Energy, Elsevier, vol. 124(C), pages 284-294.
- Gao, Mingming & Hong, Feng & Liu, Jizhen, 2017. "Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units," Applied Energy, Elsevier, vol. 185(P1), pages 463-471.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
- Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
- Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
- Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
- Yu, Haoyang & Gao, Mingming & Zhang, Hongfu & Yue, Guangxi & Zhang, Zhen, 2023. "Data-driven optimization of pollutant emission and operational efficiency for circulating fluidized bed unit," Energy, Elsevier, vol. 281(C).
- Chen, Chen & Zhao, Chenyu & Liu, Ming & Wang, Chaoyang & Yan, Junjie, 2024. "Enhancing the load cycling rate of subcritical coal-fired power plants: A novel control strategy based on data-driven feedwater active regulation," Energy, Elsevier, vol. 312(C).
- Wang, Zhu & Liu, Ming & Yan, Hui & Yan, Junjie, 2022. "Optimization on coordinate control strategy assisted by high-pressure extraction steam throttling to achieve flexible and efficient operation of thermal power plants," Energy, Elsevier, vol. 244(PA).
- Wang, Zhu & Liu, Ming & Yan, Junjie, 2021. "Flexibility and efficiency co-enhancement of thermal power plant by control strategy improvement considering time varying and detailed boiler heat storage characteristics," Energy, Elsevier, vol. 232(C).
- Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
- Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
- Alsanousie, Abdurrahman A. & Elsamni, Osama A. & Attia, Abdelhamid E. & Elhelw, Mohamed, 2021. "Transient and troubleshoots management of aged small-scale steam power plants using Aspen Plus Dynamics," Energy, Elsevier, vol. 223(C).
- Yue, Tingyi & Wang, Honglei & Li, Chengjiang & Hu, Yu-jie, 2024. "Optimization strategies for green power and certificate trading in China considering seasonality: An evolutionary game-based system dynamics," Energy, Elsevier, vol. 311(C).
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Han, Zhixin & Fang, Debin & Yang, Peiwen & Lei, Leyao, 2023. "Cooperative mechanisms for multi-energy complementarity in the electricity spot market," Energy Economics, Elsevier, vol. 127(PB).
- Fan Zhang & Yali Xue & Donghai Li & Zhenlong Wu & Ting He, 2019. "On the Flexible Operation of Supercritical Circulating Fluidized Bed: Burning Carbon Based Decentralized Active Disturbance Rejection Control," Energies, MDPI, vol. 12(6), pages 1-18, March.
- Zheng, Qingying & Hu, Haoyang & Li, Jianglong, 2024. "Enterprise decision-making in energy use rights trading market: A theoretical and simulation study," Energy Policy, Elsevier, vol. 193(C).
- Tang, Zhenhao & Wang, Shikui & Li, Yue, 2024. "Dynamic NOX emission concentration prediction based on the combined feature selection algorithm and deep neural network," Energy, Elsevier, vol. 292(C).
- Feng, Sida & Zhang, Xingping & Zhang, Haonan & Ju, Liwei & Zhang, Xinyue, 2024. "A two-stage bi-level electricity-carbon coordinated optimization model for China's coal-fired power system considering variable renewable energy bidding," Energy, Elsevier, vol. 312(C).
- Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
- Chen, Jia & Wang, Ning & Lin, Tongzhi & Liu, Baoliu & Hu, Jin, 2024. "Shock or empowerment? Artificial intelligence technology and corporate ESG performance," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 1080-1096.
More about this item
Keywords
CFB power unit; Flexibility; Load ramp-up; Dynamic model; Internal stored energy; Control strategy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023454. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.