IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v132y2017icp269-279.html
   My bibliography  Save this article

Intelligent management of coal stockpiles using improved grey spontaneous combustion forecasting models

Author

Listed:
  • Peng, Gongzhuang
  • Wang, Hongwei
  • Song, Xiao
  • Zhang, Heming

Abstract

Intelligent coal stockpiles management system is significant for the next-generation cleaner power plants. Prevention of spontaneous combustion is a key issue for such a system, both in economic and environmental terms. As many factors can influence the self heating process of coal such as moisture and ash in coal, temperature distribution and stockpiles' shapes, the remaining ignition time is developed as an aggregative indicator to measure the tendencies of spontaneous coal combustion. Using this value, the grey models have been applied to forecast spontaneous combustion and their performances are good for systems with insufficient information. However, the forecasting accuracy of these models still needs to be improved. Therefore, the ABC-RGM(1,1) model is proposed in this work based on the rolling-GM(1,1) and the Artificial Bee Colony (ABC) optimization algorithm, which has been applied to the management system of a 4 × 600 MW power plant. The computational experiments show that the ABC-RGM(1,1) model achieves better performance than the other popular grey models and accuracy of forecast is greatly improved especially for short-term forecasts. Such an accurate model is highly important and useful for intelligent coal management systems which can improve decision making and reduce risk.

Suggested Citation

  • Peng, Gongzhuang & Wang, Hongwei & Song, Xiao & Zhang, Heming, 2017. "Intelligent management of coal stockpiles using improved grey spontaneous combustion forecasting models," Energy, Elsevier, vol. 132(C), pages 269-279.
  • Handle: RePEc:eee:energy:v:132:y:2017:i:c:p:269-279
    DOI: 10.1016/j.energy.2017.05.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421730823X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
    2. Zhao, Ze & Wang, Jianzhou & Zhao, Jing & Su, Zhongyue, 2012. "Using a Grey model optimized by Differential Evolution algorithm to forecast the per capita annual net income of rural households in China," Omega, Elsevier, vol. 40(5), pages 525-532.
    3. Li-Hui Chen & Tsuei-Yang Guo, 2011. "Forecasting financial crises for an enterprise by using the Grey Markov forecasting model," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(4), pages 911-922, June.
    4. Bahrami, Saadat & Hooshmand, Rahmat-Allah & Parastegari, Moein, 2014. "Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm," Energy, Elsevier, vol. 72(C), pages 434-442.
    5. Smrekar, J. & Assadi, M. & Fast, M. & Kuštrin, I. & De, S., 2009. "Development of artificial neural network model for a coal-fired boiler using real plant data," Energy, Elsevier, vol. 34(2), pages 144-152.
    6. Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.
    7. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    2. Deng, Jun & Yang, Yi & Zhang, Yan-Ni & Liu, Bo & Shu, Chi-Min, 2018. "Inhibiting effects of three commercial inhibitors in spontaneous coal combustion," Energy, Elsevier, vol. 160(C), pages 1174-1185.
    3. Li, Jinhu & Li, Zenghua & Yang, Yongliang & Duan, Yujian & Xu, Jun & Gao, Ruiting, 2019. "Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures," Energy, Elsevier, vol. 185(C), pages 28-38.
    4. Li, Shoujun & Miao, Yanzi & Li, Guangyu & Ikram, Muhammad, 2020. "A novel varistructure grey forecasting model with speed adaptation and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 45-70.
    5. Lv, Hongpeng & Li, Bei & Deng, Jun & Ye, Lili & Gao, Wei & Shu, Chi-Min & Bi, Mingshu, 2021. "A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion," Energy, Elsevier, vol. 231(C).
    6. Xu, Yong-liang & Liu, Ze-jian & Wen, Xing-lin & Wang, Lan-yun & Lv, Zhi-guang & Wu, Jin-dong & Li, Min-jie, 2022. "The cataclysmic characteristics for bituminous-coal oxidation under uniaxial stress based on catastrophe theory," Energy, Elsevier, vol. 248(C).
    7. Li, Purui & Yang, Yongliang & Zhao, Xiaohao & Li, Jinhu & Yang, Jingjing & Zhang, Yifan & Yan, Qi & Shen, Chang, 2023. "Spontaneous combustion and oxidation kinetic characteristics of alkaline-water-immersed coal," Energy, Elsevier, vol. 263(PE).
    8. Yan, Li & Wen, Hu & Liu, Wenyong & Jin, Yongfei & Liu, Yin & Li, Chuansheng, 2022. "Adiabatic spontaneous coal combustion period derived from the thermal effect of spontaneous combustion," Energy, Elsevier, vol. 239(PB).
    9. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Wuyong & Wang, Jue, 2020. "An improved seasonal GM(1,1) model based on the HP filter for forecasting wind power generation in China," Energy, Elsevier, vol. 209(C).
    2. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    3. Nana Geng & Yong Zhang & Yixiang Sun & Yunjian Jiang & Dandan Chen, 2015. "Forecasting China’s Annual Biofuel Production Using an Improved Grey Model," Energies, MDPI, vol. 8(10), pages 1-20, October.
    4. Bo Zeng & Shuliang Li & Wei Meng & Dehai Zhang, 2019. "An improved gray prediction model for China’s beef consumption forecasting," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-18, September.
    5. Navarkar, Abhishek & Hasti, Veeraraghava Raju & Deneke, Elihu & Gore, Jay P., 2020. "A data-driven model for thermodynamic properties of a steam generator under cycling operation," Energy, Elsevier, vol. 211(C).
    6. Yagang Zhang & Jingyun Yang & Kangcheng Wang & Yinding Wang, 2014. "Lorenz Wind Disturbance Model Based on Grey Generated Components," Energies, MDPI, vol. 7(11), pages 1-16, November.
    7. Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
    8. Lv, You & Hong, Feng & Yang, Tingting & Fang, Fang & Liu, Jizhen, 2017. "A dynamic model for the bed temperature prediction of circulating fluidized bed boilers based on least squares support vector machine with real operational data," Energy, Elsevier, vol. 124(C), pages 284-294.
    9. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    10. Weiwei Pan & Lirong Jian & Tao Liu, 2019. "Grey system theory trends from 1991 to 2018: a bibliometric analysis and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1407-1434, December.
    11. Zhao, Huiru & Guo, Sen, 2016. "An optimized grey model for annual power load forecasting," Energy, Elsevier, vol. 107(C), pages 272-286.
    12. Wang, Qiang & Song, Xiaoxin, 2019. "Forecasting China's oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM," Energy, Elsevier, vol. 183(C), pages 160-171.
    13. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    14. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
    15. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    16. Zeng, Bo & Li, Chuan, 2016. "Forecasting the natural gas demand in China using a self-adapting intelligent grey model," Energy, Elsevier, vol. 112(C), pages 810-825.
    17. Xiong, Ping-ping & Dang, Yao-guo & Yao, Tian-xiang & Wang, Zheng-xin, 2014. "Optimal modeling and forecasting of the energy consumption and production in China," Energy, Elsevier, vol. 77(C), pages 623-634.
    18. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    19. Wei Sun & Chongchong Zhang, 2018. "A Hybrid BA-ELM Model Based on Factor Analysis and Similar-Day Approach for Short-Term Load Forecasting," Energies, MDPI, vol. 11(5), pages 1-18, May.
    20. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:132:y:2017:i:c:p:269-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.