IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v301y2022i2p414-431.html
   My bibliography  Save this article

Pareto-scheduling of two competing agents with their own equal processing times

Author

Listed:
  • Chen, Rubing
  • Geng, Zhichao
  • Lu, Lingfa
  • Yuan, Jinjiang
  • Zhang, Yuan

Abstract

We consider the Pareto-scheduling of two competing agents on a single machine, in which the jobs of each agent have their “own equal processing times” (shortly, OEPT). In the literature, two special versions of the OEPT model, in which the jobs have either unit or equal processing times, have been well studied, where the criteria are given by various regular objective functions without including the late work criteria. However, for equal processing times, the exact complexity of three problems is still unaddressed. Two-agent scheduling related to late work criteria is also a hot topic in recent years. This inspires our research by also including the total (weighted) late work as criteria. We show that, for equal processing times, all the problems are binary NP-hard if the criterion of one agent is the total tardiness or the total late work and the criterion of the other agent is either the total tardiness or the total late work or the weighted number of tardy jobs or the total weighted completion time. As a result, complexity classification for equal processing times is completely addressed. We further show that all the problems under the OEPT model are either polynomially solvable or ordinary NP-hard, which results in a complete complexity classification for the OEPT model.

Suggested Citation

  • Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
  • Handle: RePEc:eee:ejores:v:301:y:2022:i:2:p:414-431
    DOI: 10.1016/j.ejor.2021.10.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721009279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.10.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M.I. Dessouky & B.J. Lageweg & J.K. Lenstra & S.L. van de Velde, 1990. "Scheduling identical jobs on uniform parallel machines," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 44(3), pages 115-123, September.
    2. Wan, Long & Yuan, Jinjiang & Wei, Lijun, 2016. "Pareto optimization scheduling with two competing agents to minimize the number of tardy jobs and the maximum cost," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 912-923.
    3. Subhash C. Sarin & Divya Prakash, 2004. "Equal Processing Time Bicriteria Scheduling on Parallel Machines," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 227-240, September.
    4. Gao, Yuan & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2019. "A further study on two-agent parallel-batch scheduling with release dates and deteriorating jobs to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 273(1), pages 74-81.
    5. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    6. Qiulan Zhao & Jinjiang Yuan, 2020. "Bicriteria scheduling of equal length jobs on uniform parallel machines," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 637-661, April.
    7. Xin Chen & Malgorzata Sterna & Xin Han & Jacek Blazewicz, 2016. "Scheduling on parallel identical machines with late work criterion: Offline and online cases," Journal of Scheduling, Springer, vol. 19(6), pages 729-736, December.
    8. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    9. Oron, Daniel & Shabtay, Dvir & Steiner, George, 2015. "Single machine scheduling with two competing agents and equal job processing times," European Journal of Operational Research, Elsevier, vol. 244(1), pages 86-99.
    10. Agnetis, Alessandro & Chen, Bo & Nicosia, Gaia & Pacifici, Andrea, 2019. "Price of fairness in two-agent single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 79-87.
    11. Hermelin, Danny & Kubitza, Judith-Madeleine & Shabtay, Dvir & Talmon, Nimrod & Woeginger, Gerhard J., 2019. "Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems," Omega, Elsevier, vol. 83(C), pages 275-286.
    12. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    13. Yuan Zhang & Jinjiang Yuan & Chi To Ng & Tai Chiu E. Cheng, 2021. "Pareto‐optimization of three‐agent scheduling to minimize the total weighted completion time, weighted number of tardy jobs, and total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 378-393, April.
    14. Mor, Baruch & Mosheiov, Gur, 2010. "Scheduling problems with two competing agents to minimize minmax and minsum earliness measures," European Journal of Operational Research, Elsevier, vol. 206(3), pages 540-546, November.
    15. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
    16. Yunqiang Yin & Jianyou Xu & T. C. E. Cheng & Chin‐Chia Wu & Du‐Juan Wang, 2016. "Approximation schemes for single‐machine scheduling with a fixed maintenance activity to minimize the total amount of late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 172-183, March.
    17. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    18. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    19. Wang, Jun-Qiang & Fan, Guo-Qiang & Zhang, Yingqian & Zhang, Cheng-Wu & Leung, Joseph Y.-T., 2017. "Two-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizes," European Journal of Operational Research, Elsevier, vol. 258(2), pages 478-490.
    20. Enrique Gerstl & Baruch Mor & Gur Mosheiov, 2019. "Scheduling on a proportionate flowshop to minimise total late work," International Journal of Production Research, Taylor & Francis Journals, vol. 57(2), pages 531-543, January.
    21. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    22. Wan, Long & Mei, Jiajie & Du, Jiangze, 2021. "Two-agent scheduling of unit processing time jobs to minimize total weighted completion time and total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 290(1), pages 26-35.
    23. Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2020. "Scheduling with release dates and preemption to minimize multiple max-form objective functions," European Journal of Operational Research, Elsevier, vol. 280(3), pages 860-875.
    24. Rubing Chen & Jinjiang Yuan & Yuan Gao, 2019. "The complexity of CO-agent scheduling to minimize the total completion time and total number of tardy jobs," Journal of Scheduling, Springer, vol. 22(5), pages 581-593, October.
    25. Malgorzata Sterna & Kateryna Czerniachowska, 2017. "Polynomial Time Approximation Scheme for Two Parallel Machines Scheduling with a Common Due Date to Maximize Early Work," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 927-944, September.
    26. Yuan Zhang & Zhichao Geng & Jinjiang Yuan, 2020. "Two-Agent Pareto-Scheduling of Minimizing Total Weighted Completion Time and Total Weighted Late Work," Mathematics, MDPI, vol. 8(11), pages 1-17, November.
    27. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    28. A. M. A. Hariri & C. N. Potts & L. N. Van Wassenhove, 1995. "Single Machine Scheduling to Minimize Total Weighted Late Work," INFORMS Journal on Computing, INFORMS, vol. 7(2), pages 232-242, May.
    29. Donatas Elvikis & Vincent T’kindt, 2014. "Two-agent scheduling on uniform parallel machines with min-max criteria," Annals of Operations Research, Springer, vol. 213(1), pages 79-94, February.
    30. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    31. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    32. Ruyan He & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2021. "Two-agent preemptive Pareto-scheduling to minimize the number of tardy jobs and total late work," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 504-525, February.
    33. Yuan Zhang & Jinjiang Yuan, 2019. "A note on a two-agent scheduling problem related to the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 989-999, April.
    34. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    35. Tang, Lixin & Zhao, Xiaoli & Liu, Jiyin & Leung, Joseph Y.-T., 2017. "Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine," European Journal of Operational Research, Elsevier, vol. 263(2), pages 401-411.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    2. Qi Feng & Shisheng Li, 2022. "Algorithms for Multi-Customer Scheduling with Outsourcing," Mathematics, MDPI, vol. 10(9), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    2. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    3. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    4. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    5. Yuan Zhang & Jinjiang Yuan & Chi To Ng & Tai Chiu E. Cheng, 2021. "Pareto‐optimization of three‐agent scheduling to minimize the total weighted completion time, weighted number of tardy jobs, and total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 378-393, April.
    6. Wan, Long & Mei, Jiajie & Du, Jiangze, 2021. "Two-agent scheduling of unit processing time jobs to minimize total weighted completion time and total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 290(1), pages 26-35.
    7. Ruyan He & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2021. "Two-agent preemptive Pareto-scheduling to minimize the number of tardy jobs and total late work," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 504-525, February.
    8. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    9. Yuan Gao & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2022. "Pareto-scheduling with family jobs or ND-agent on a parallel-batch machine to minimize the makespan and maximum cost," 4OR, Springer, vol. 20(2), pages 273-287, June.
    10. Chen, Xin & Liang, Yage & Sterna, Małgorzata & Wang, Wen & Błażewicz, Jacek, 2020. "Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date," European Journal of Operational Research, Elsevier, vol. 284(1), pages 67-74.
    11. Zhang Xingong & Wang Yong, 2017. "Two-agent scheduling problems on a single-machine to minimize the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 945-955, April.
    12. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
    13. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    14. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    15. Gao, Yuan & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2019. "A further study on two-agent parallel-batch scheduling with release dates and deteriorating jobs to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 273(1), pages 74-81.
    16. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    17. Qiulan Zhao & Jinjiang Yuan, 2020. "Bicriteria scheduling of equal length jobs on uniform parallel machines," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 637-661, April.
    18. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    19. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    20. Yuan Zhang & Zhichao Geng & Jinjiang Yuan, 2020. "Two-Agent Pareto-Scheduling of Minimizing Total Weighted Completion Time and Total Weighted Late Work," Mathematics, MDPI, vol. 8(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:301:y:2022:i:2:p:414-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.