IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i2p531-543.html
   My bibliography  Save this article

Scheduling on a proportionate flowshop to minimise total late work

Author

Listed:
  • Enrique Gerstl
  • Baruch Mor
  • Gur Mosheiov

Abstract

We study a scheduling problem to minimise total late work, i.e. each job is penalised according to the duration of its parts scheduled after its due-date. The machine setting is an m-machine proportionate flow shop. Two versions of the problem are studied: (i) the case that total late work refers to the last operation of the job (i.e. the operation performed on the last machine of the flow shop); (ii) the case that total late work refers to all the operations (on all machines). Both versions are known to be NP-hard. We prove a crucial property of an optimal schedule, and consequently introduce efficient pseudo-polynomial dynamic programming algorithms for the two versions. The dynamic programming algorithms are tested numerically and proved to perform well on large size instances.

Suggested Citation

  • Enrique Gerstl & Baruch Mor & Gur Mosheiov, 2019. "Scheduling on a proportionate flowshop to minimise total late work," International Journal of Production Research, Taylor & Francis Journals, vol. 57(2), pages 531-543, January.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:2:p:531-543
    DOI: 10.1080/00207543.2018.1456693
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1456693
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1456693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xin & Miao, Qian & Lin, Bertrand M.T. & Sterna, Malgorzata & Blazewicz, Jacek, 2022. "Two-machine flow shop scheduling with a common due date to maximize total early work," European Journal of Operational Research, Elsevier, vol. 300(2), pages 504-511.
    2. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    3. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    4. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    5. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    6. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    7. Chen, Xin & Liang, Yage & Sterna, Małgorzata & Wang, Wen & Błażewicz, Jacek, 2020. "Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date," European Journal of Operational Research, Elsevier, vol. 284(1), pages 67-74.
    8. Koulamas, Christos, 2020. "The proportionate flow shop total tardiness problem," European Journal of Operational Research, Elsevier, vol. 284(2), pages 439-444.
    9. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:2:p:531-543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.