IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v19y2016i6d10.1007_s10951-015-0464-7.html
   My bibliography  Save this article

Scheduling on parallel identical machines with late work criterion: Offline and online cases

Author

Listed:
  • Xin Chen

    (Dalian University of Technology)

  • Malgorzata Sterna

    (Poznan University of Technology)

  • Xin Han

    (Dalian University of Technology)

  • Jacek Blazewicz

    (Poznan University of Technology)

Abstract

In the paper, we consider the problem of scheduling jobs on parallel identical machines with the late work criterion and a common due date, both offline and online cases. Since the late work criterion has not been studied in the online mode so far, the analysis of the online problem is preceded by the analysis of the offline problem, whose complexity status has not been formally stated in the literature yet. Namely, for the offline mode, we prove that the two-machine problem is binary NP-hard, and the general case is unary NP-hard. In the online mode we assume that jobs arrive in the system one by one, i.e., we consider the online over list model. We give an algorithm with a competitive ratio being a function of the number of machines, and we prove the optimality of this approach for two identical machines.

Suggested Citation

  • Xin Chen & Malgorzata Sterna & Xin Han & Jacek Blazewicz, 2016. "Scheduling on parallel identical machines with late work criterion: Offline and online cases," Journal of Scheduling, Springer, vol. 19(6), pages 729-736, December.
  • Handle: RePEc:spr:jsched:v:19:y:2016:i:6:d:10.1007_s10951-015-0464-7
    DOI: 10.1007/s10951-015-0464-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-015-0464-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-015-0464-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianfeng Ren & Yuzhong Zhang & Guo Sun, 2009. "The Np-Hardness Of Minimizing The Total Late Work On An Unbounded Batch Machine," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(03), pages 351-363.
    2. A. M. A. Hariri & C. N. Potts & L. N. Van Wassenhove, 1995. "Single Machine Scheduling to Minimize Total Weighted Late Work," INFORMS Journal on Computing, INFORMS, vol. 7(2), pages 232-242, May.
    3. Gerhard J. Woeginger, 2000. "When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 57-74, February.
    4. Hamilton Emmons, 1969. "One-Machine Sequencing to Minimize Certain Functions of Job Tardiness," Operations Research, INFORMS, vol. 17(4), pages 701-715, August.
    5. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    6. Graham McMahon & Michael Florian, 1975. "On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness," Operations Research, INFORMS, vol. 23(3), pages 475-482, June.
    7. M. Y. Kovalyov & C. N. Potts & L. N. van Wassenhove, 1994. "A Fully Polynomial Approximation Scheme for Scheduling a Single Machine to Minimize Total Weighted Late Work," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 86-93, February.
    8. Blazewicz, Jacek & Pesch, Erwin & Sterna, Malgorzata & Werner, Frank, 2005. "The two-machine flow-shop problem with weighted late work criterion and common due date," European Journal of Operational Research, Elsevier, vol. 165(2), pages 408-415, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xin & Liang, Yage & Sterna, Małgorzata & Wang, Wen & Błażewicz, Jacek, 2020. "Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date," European Journal of Operational Research, Elsevier, vol. 284(1), pages 67-74.
    2. Alves de Queiroz, Thiago & Iori, Manuel & Kramer, Arthur & Kuo, Yong-Hong, 2023. "Dynamic scheduling of patients in emergency departments," European Journal of Operational Research, Elsevier, vol. 310(1), pages 100-116.
    3. Christian Billing & Florian Jaehn & Thomas Wensing, 2020. "Fair task allocation problem," Annals of Operations Research, Springer, vol. 284(1), pages 131-146, January.
    4. Malgorzata Sterna & Kateryna Czerniachowska, 2017. "Polynomial Time Approximation Scheme for Two Parallel Machines Scheduling with a Common Due Date to Maximize Early Work," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 927-944, September.
    5. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    6. Xin Chen & Sergey Kovalev & Małgorzata Sterna & Jacek Błażewicz, 2021. "Mirror scheduling problems with early work and late work criteria," Journal of Scheduling, Springer, vol. 24(5), pages 483-487, October.
    7. Jiang, Yiwei & Wu, Mengjing & Chen, Xin & Dong, Jianming & Cheng, T.C.E. & Blazewicz, Jacek & Ji, Min, 2024. "Online early work scheduling on parallel machines," European Journal of Operational Research, Elsevier, vol. 315(3), pages 855-862.
    8. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
    9. Chen, Xin & Miao, Qian & Lin, Bertrand M.T. & Sterna, Malgorzata & Blazewicz, Jacek, 2022. "Two-machine flow shop scheduling with a common due date to maximize total early work," European Journal of Operational Research, Elsevier, vol. 300(2), pages 504-511.
    10. Györgyi, Péter & Kis, Tamás, 2020. "A common approximation framework for early work, late work, and resource leveling problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 129-137.
    11. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    12. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    13. Rubing Chen & Jinjiang Yuan & C.T. Ng & T.C.E. Cheng, 2019. "Single‐machine scheduling with deadlines to minimize the total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 582-595, October.
    14. Yunhong Min & Byung-Cheon Choi & Myoung-Ju Park & Kyung Min Kim, 2023. "A parallel-machine scheduling problem with an antithetical property to maximize total weighted early work," 4OR, Springer, vol. 21(3), pages 421-437, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    2. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    3. Chen, Xin & Liang, Yage & Sterna, Małgorzata & Wang, Wen & Błażewicz, Jacek, 2020. "Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date," European Journal of Operational Research, Elsevier, vol. 284(1), pages 67-74.
    4. Rubing Chen & Jinjiang Yuan & C.T. Ng & T.C.E. Cheng, 2019. "Single‐machine scheduling with deadlines to minimize the total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 582-595, October.
    5. Malgorzata Sterna & Kateryna Czerniachowska, 2017. "Polynomial Time Approximation Scheme for Two Parallel Machines Scheduling with a Common Due Date to Maximize Early Work," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 927-944, September.
    6. Yunqiang Yin & Jianyou Xu & T. C. E. Cheng & Chin‐Chia Wu & Du‐Juan Wang, 2016. "Approximation schemes for single‐machine scheduling with a fixed maintenance activity to minimize the total amount of late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 172-183, March.
    7. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    8. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    9. Chen, Xin & Miao, Qian & Lin, Bertrand M.T. & Sterna, Malgorzata & Blazewicz, Jacek, 2022. "Two-machine flow shop scheduling with a common due date to maximize total early work," European Journal of Operational Research, Elsevier, vol. 300(2), pages 504-511.
    10. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
    11. Sang, Yao-Wen & Wang, Jun-Qiang & Sterna, Małgorzata & Błażewicz, Jacek, 2023. "Single machine scheduling with due date assignment to minimize the total weighted lead time penalty and late work," Omega, Elsevier, vol. 121(C).
    12. Justkowiak, Jan-Erik & Kovalev, Sergey & Kovalyov, Mikhail Y. & Pesch, Erwin, 2023. "Single machine scheduling with assignable due dates to minimize maximum and total late work," European Journal of Operational Research, Elsevier, vol. 308(1), pages 76-83.
    13. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    14. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    15. Györgyi, Péter & Kis, Tamás, 2020. "A common approximation framework for early work, late work, and resource leveling problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 129-137.
    16. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    17. Yuan Zhang & Jinjiang Yuan, 2019. "A note on a two-agent scheduling problem related to the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 989-999, April.
    18. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    19. Xin Chen & Sergey Kovalev & Małgorzata Sterna & Jacek Błażewicz, 2021. "Mirror scheduling problems with early work and late work criteria," Journal of Scheduling, Springer, vol. 24(5), pages 483-487, October.
    20. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:19:y:2016:i:6:d:10.1007_s10951-015-0464-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.