IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v244y2015i1p86-99.html
   My bibliography  Save this article

Single machine scheduling with two competing agents and equal job processing times

Author

Listed:
  • Oron, Daniel
  • Shabtay, Dvir
  • Steiner, George

Abstract

We study various two-agent scheduling problems on a single machine with equal job processing times. The equal processing time assumption enables us to design new polynomial-time or faster-than-known optimization algorithms for many problems. We prove, however, that there exists a subset of problems for which the computational complexity remains NP-hard. The set of hard problems includes different variations where the objective functions of the two agents are either minimizing the weighted sum of completion times or the weighted number of tardy jobs. For these problems, we present pseudo-polynomial time algorithms.

Suggested Citation

  • Oron, Daniel & Shabtay, Dvir & Steiner, George, 2015. "Single machine scheduling with two competing agents and equal job processing times," European Journal of Operational Research, Elsevier, vol. 244(1), pages 86-99.
  • Handle: RePEc:eee:ejores:v:244:y:2015:i:1:p:86-99
    DOI: 10.1016/j.ejor.2015.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715000041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mosheiov, Gur & Oron, Daniel, 2008. "Open-shop batch scheduling with identical jobs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1282-1292, June.
    2. Sheldon B. Akers, 1956. "Letter to the Editor---A Graphical Approach to Production Scheduling Problems," Operations Research, INFORMS, vol. 4(2), pages 244-245, April.
    3. E. L. Lawler, 1973. "Optimal Sequencing of a Single Machine Subject to Precedence Constraints," Management Science, INFORMS, vol. 19(5), pages 544-546, January.
    4. Briskorn, Dirk & Choi, Byung-Cheon & Lee, Kangbok & Leung, Joseph & Pinedo, Michael, 2010. "Complexity of single machine scheduling subject to nonnegative inventory constraints," European Journal of Operational Research, Elsevier, vol. 207(2), pages 605-619, December.
    5. Nikhil Bansal & Tracy Kimbrel & Maxim Sviridenko, 2006. "Job Shop Scheduling with Unit Processing Times," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 381-389, May.
    6. Mosheiov, Gur & Yovel, Uri, 2006. "Minimizing weighted earliness-tardiness and due-date cost with unit processing-time jobs," European Journal of Operational Research, Elsevier, vol. 172(2), pages 528-544, July.
    7. Cheng, T.C.E. & Ng, C.T. & Yuan, J.J., 2008. "Multi-agent scheduling on a single machine with max-form criteria," European Journal of Operational Research, Elsevier, vol. 188(2), pages 603-609, July.
    8. Shabtay, Dvir & Arviv, Kfir & Stern, Helman & Edan, Yael, 2014. "A combined robot selection and scheduling problem for flow-shops with no-wait restrictions," Omega, Elsevier, vol. 43(C), pages 96-107.
    9. Donatas Elvikis & Vincent T’kindt, 2014. "Two-agent scheduling on uniform parallel machines with min-max criteria," Annals of Operations Research, Springer, vol. 213(1), pages 79-94, February.
    10. Shlomo Karhi & Dvir Shabtay, 2013. "On the optimality of the TLS algorithm for solving the online-list scheduling problem with two job types on a set of multipurpose machines," Journal of Combinatorial Optimization, Springer, vol. 26(1), pages 198-222, July.
    11. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    12. Refael Hassin, 1992. "Approximation Schemes for the Restricted Shortest Path Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 36-42, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    2. Baruch Mor & Gur Mosheiov, 2016. "Minimizing maximum cost on a single machine with two competing agents and job rejection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1524-1531, December.
    3. Phosavanh, Johnson & Oron, Daniel, 2024. "Two-agent single-machine scheduling with a rate-modifying activity," European Journal of Operational Research, Elsevier, vol. 312(3), pages 866-876.
    4. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    5. Wan, Long & Mei, Jiajie & Du, Jiangze, 2021. "Two-agent scheduling of unit processing time jobs to minimize total weighted completion time and total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 290(1), pages 26-35.
    6. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    7. Hermelin, Danny & Kubitza, Judith-Madeleine & Shabtay, Dvir & Talmon, Nimrod & Woeginger, Gerhard J., 2019. "Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems," Omega, Elsevier, vol. 83(C), pages 275-286.
    8. Enrique Gerstl & Baruch Mor & Gur Mosheiov, 2017. "Scheduling with two competing agents to minimize total weighted earliness," Annals of Operations Research, Springer, vol. 253(1), pages 227-245, June.
    9. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    10. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    11. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    12. Qi Feng & Shisheng Li, 2022. "Algorithms for Multi-Customer Scheduling with Outsourcing," Mathematics, MDPI, vol. 10(9), pages 1-12, May.
    13. Wenjie Li & Jinjiang Yuan, 2021. "Single-machine online scheduling of jobs with non-delayed processing constraint," Journal of Combinatorial Optimization, Springer, vol. 41(4), pages 830-843, May.
    14. Zhang Xingong & Wang Yong, 2017. "Two-agent scheduling problems on a single-machine to minimize the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 945-955, April.
    15. Oron, Daniel, 2021. "Two-agent scheduling problems under rejection budget constraints," Omega, Elsevier, vol. 102(C).
    16. Yuan Gao & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2022. "Pareto-scheduling with family jobs or ND-agent on a parallel-batch machine to minimize the makespan and maximum cost," 4OR, Springer, vol. 20(2), pages 273-287, June.
    17. Zhijun Xu & Dehua Xu, 2018. "Single-machine scheduling with workload-dependent tool change durations and equal processing time jobs to minimize total completion time," Journal of Scheduling, Springer, vol. 21(4), pages 461-482, August.
    18. Yuan Zhang & Jinjiang Yuan & Chi To Ng & Tai Chiu E. Cheng, 2021. "Pareto‐optimization of three‐agent scheduling to minimize the total weighted completion time, weighted number of tardy jobs, and total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 378-393, April.
    19. Qiulan Zhao & Jinjiang Yuan, 2020. "Bicriteria scheduling of equal length jobs on uniform parallel machines," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 637-661, April.
    20. Ruyan He & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2021. "Two-agent preemptive Pareto-scheduling to minimize the number of tardy jobs and total late work," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 504-525, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    2. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    3. Wan, Long & Yuan, Jinjiang & Wei, Lijun, 2016. "Pareto optimization scheduling with two competing agents to minimize the number of tardy jobs and the maximum cost," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 912-923.
    4. Klaus Heeger & Danny Hermelin & George B. Mertzios & Hendrik Molter & Rolf Niedermeier & Dvir Shabtay, 2023. "Equitable scheduling on a single machine," Journal of Scheduling, Springer, vol. 26(2), pages 209-225, April.
    5. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    6. Geng, Zhichao & Yuan, Jinjiang, 2023. "Single-machine scheduling of multiple projects with controllable processing times," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1074-1090.
    7. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    8. Ren-Xia Chen & Shi-Sheng Li, 2019. "Two-agent single-machine scheduling with cumulative deterioration," 4OR, Springer, vol. 17(2), pages 201-219, June.
    9. Baruch Mor & Gur Mosheiov, 2016. "Minimizing maximum cost on a single machine with two competing agents and job rejection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1524-1531, December.
    10. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    11. Cheng, Shuenn-Ren, 2014. "Some new problems on two-agent scheduling to minimize the earliness costs," International Journal of Production Economics, Elsevier, vol. 156(C), pages 24-30.
    12. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
    13. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    14. Zhang Xingong & Wang Yong, 2017. "Two-agent scheduling problems on a single-machine to minimize the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 945-955, April.
    15. Wang, Du-Juan & Yin, Yunqiang & Xu, Jianyou & Wu, Wen-Hsiang & Cheng, Shuenn-Ren & Wu, Chin-Chia, 2015. "Some due date determination scheduling problems with two agents on a single machine," International Journal of Production Economics, Elsevier, vol. 168(C), pages 81-90.
    16. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    17. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    18. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    19. Wan, Long & Mei, Jiajie & Du, Jiangze, 2021. "Two-agent scheduling of unit processing time jobs to minimize total weighted completion time and total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 290(1), pages 26-35.
    20. Yaodong Ni & Zhaojun Zhao, 2017. "Two-agent scheduling problem under fuzzy environment," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 739-748, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:244:y:2015:i:1:p:86-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.