IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v206y2010i3p540-546.html
   My bibliography  Save this article

Scheduling problems with two competing agents to minimize minmax and minsum earliness measures

Author

Listed:
  • Mor, Baruch
  • Mosheiov, Gur

Abstract

A relatively new class of scheduling problems consists of multiple agents who compete on the use of a common processor. We focus in this paper on a two-agent setting. Each of the agents has a set of jobs to be processed on the same processor, and each of the agents wants to minimize a measure which depends on the completion times of its own jobs. The goal is to schedule the jobs such that the combined schedule performs well with respect to the measures of both agents. We consider measures of minmax and minsum earliness. Specifically, we focus on minimizing maximum earliness cost or total (weighted) earliness cost of one agent, subject to an upper bound on the maximum earliness cost of the other agent. We introduce a polynomial-time solution for the minmax problem, and prove NP-hardness for the weighted minsum case. The unweighted minsum problem is shown to have a polynomial-time solution.

Suggested Citation

  • Mor, Baruch & Mosheiov, Gur, 2010. "Scheduling problems with two competing agents to minimize minmax and minsum earliness measures," European Journal of Operational Research, Elsevier, vol. 206(3), pages 540-546, November.
  • Handle: RePEc:eee:ejores:v:206:y:2010:i:3:p:540-546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00171-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamers, H.J.M. & Borm, P.E.M. & Tijs, S.H., 1993. "On games corresponding to sequencing situations with ready times," Other publications TiSEM 8e2af556-5430-4f98-9334-c, Tilburg University, School of Economics and Management.
    2. Hervé Crès & Hervé Moulin, 2001. "Scheduling with Opting Out: Improving upon Random Priority," Operations Research, INFORMS, vol. 49(4), pages 565-577, August.
    3. Curiel, I. & Pederzoli, G. & Tijs, S.H., 1989. "Sequencing games," Other publications TiSEM cd695be5-0f54-4548-a952-2, Tilburg University, School of Economics and Management.
    4. Cheng, T.C.E. & Ng, C.T. & Yuan, J.J., 2008. "Multi-agent scheduling on a single machine with max-form criteria," European Journal of Operational Research, Elsevier, vol. 188(2), pages 603-609, July.
    5. Curiel, Imma & Pederzoli, Giorgio & Tijs, Stef, 1989. "Sequencing games," European Journal of Operational Research, Elsevier, vol. 40(3), pages 344-351, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baruch Mor & Gur Mosheiov, 2017. "A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1454-1468, May.
    2. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    3. Baruch Mor & Gur Mosheiov, 2016. "Minimizing maximum cost on a single machine with two competing agents and job rejection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1524-1531, December.
    4. Byung-Cheon Choi & Myoung-Ju Park, 2016. "An Ordered Flow Shop with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-24, October.
    5. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    6. Cheng, Shuenn-Ren, 2014. "Some new problems on two-agent scheduling to minimize the earliness costs," International Journal of Production Economics, Elsevier, vol. 156(C), pages 24-30.
    7. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    8. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    9. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    10. Lang, Fabian & Fink, Andreas & Brandt, Tobias, 2016. "Design of automated negotiation mechanisms for decentralized heterogeneous machine scheduling," European Journal of Operational Research, Elsevier, vol. 248(1), pages 192-203.
    11. Enrique Gerstl & Baruch Mor & Gur Mosheiov, 2017. "Scheduling with two competing agents to minimize total weighted earliness," Annals of Operations Research, Springer, vol. 253(1), pages 227-245, June.
    12. Mor, Baruch & Mosheiov, Gur, 2011. "Single machine batch scheduling with two competing agents to minimize total flowtime," European Journal of Operational Research, Elsevier, vol. 215(3), pages 524-531, December.
    13. Yunqiang Yin & Du‐Juan Wang & Chin‐Chia Wu & T.C.E. Cheng, 2016. "CON/SLK due date assignment and scheduling on a single machine with two agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 416-429, August.
    14. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    15. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    16. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    17. Koulamas, Christos, 2015. "A note on scheduling problems with competing agents and earliness minimization objectives," European Journal of Operational Research, Elsevier, vol. 245(3), pages 875-876.
    18. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    19. Wang, Du-Juan & Yin, Yunqiang & Xu, Jianyou & Wu, Wen-Hsiang & Cheng, Shuenn-Ren & Wu, Chin-Chia, 2015. "Some due date determination scheduling problems with two agents on a single machine," International Journal of Production Economics, Elsevier, vol. 168(C), pages 81-90.
    20. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
    21. Enrique Gerstl & Gur Mosheiov, 2014. "Single machine just‐in‐time scheduling problems with two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 1-16, February.
    22. Shang-Chia Liu & Jiahui Duan & Win-Chin Lin & Wen-Hsiang Wu & Jan-Yee Kung & Hau Chen & Chin-Chia Wu, 2018. "A Branch-and-Bound Algorithm for Two-Agent Scheduling with Learning Effect and Late Work Criterion," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-24, October.
    23. Xiaoling Cao & Wen-Hsing Wu & Wen-Hung Wu & Chin-Chia Wu, 2018. "Some two-agent single-machine scheduling problems to minimize minmax and minsum of completion times," Operational Research, Springer, vol. 18(2), pages 293-314, July.
    24. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    25. Yunqiang Yin & Youhua Chen & Kaida Qin & Dujuan Wang, 2019. "Two-agent scheduling on unrelated parallel machines with total completion time and weighted number of tardy jobs criteria," Journal of Scheduling, Springer, vol. 22(3), pages 315-333, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nong, Q.Q. & Cheng, T.C.E. & Ng, C.T., 2011. "Two-agent scheduling to minimize the total cost," European Journal of Operational Research, Elsevier, vol. 215(1), pages 39-44, November.
    2. van Velzen, S. & Hamers, H.J.M., 2002. "On the Balancedness of Relaxed Sequencing Games," Discussion Paper 2002-49, Tilburg University, Center for Economic Research.
    3. Borm, Peter & Fiestras-Janeiro, Gloria & Hamers, Herbert & Sanchez, Estela & Voorneveld, Mark, 2002. "On the convexity of games corresponding to sequencing situations with due dates," European Journal of Operational Research, Elsevier, vol. 136(3), pages 616-634, February.
    4. Suijs, Jeroen & Borm, Peter & De Waegenaere, Anja & Tijs, Stef, 1999. "Cooperative games with stochastic payoffs," European Journal of Operational Research, Elsevier, vol. 113(1), pages 193-205, February.
    5. Hamers, Herbert & Klijn, Flip & Suijs, Jeroen, 1999. "On the balancedness of multiple machine sequencing games," European Journal of Operational Research, Elsevier, vol. 119(3), pages 678-691, December.
    6. Grundel, Soesja & Çiftçi, Barış & Borm, Peter & Hamers, Herbert, 2013. "Family sequencing and cooperation," European Journal of Operational Research, Elsevier, vol. 226(3), pages 414-424.
    7. Min Ji & Sai Liu & Xiaolin Zhang & Keke Cao & T. C. E. Cheng, 2017. "Sequencing Games with Slack Due Windows and Group Technology Considerations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 121-133, February.
    8. Herbert Hamers & Flip Klijn & Bas van Velzen, 2002. "On Games corresponding to Sequencing Situations with Precedence Relations," UFAE and IAE Working Papers 553.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    9. Gerichhausen, M. & Hamers, H.J.M., 2007. "Partitioning Sequencing Situations and Games," Discussion Paper 2007-40, Tilburg University, Center for Economic Research.
    10. Hamers, Herbert, 1997. "On the concavity of delivery games," European Journal of Operational Research, Elsevier, vol. 99(2), pages 445-458, June.
    11. Tolga Aydinliyim & George L. Vairaktarakis, 2010. "Coordination of Outsourced Operations to Minimize Weighted Flow Time and Capacity Booking Costs," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 236-255, January.
    12. Gerichhausen, Marloes & Hamers, Herbert, 2009. "Partitioning sequencing situations and games," European Journal of Operational Research, Elsevier, vol. 196(1), pages 207-216, July.
    13. van Velzen, Bas & Hamers, Herbert & Solymosi, Tamas, 2008. "Core stability in chain-component additive games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 116-139, January.
    14. Pedro Calleja & Peter Borm & Herbert Hamers & Flip Klijn & Marco Slikker, 2002. "On a New Class of Parallel Sequencing Situations and Related Games," Annals of Operations Research, Springer, vol. 109(1), pages 265-277, January.
    15. van Velzen, S., 2003. "Sequencing Games with Controllable Processing Time," Discussion Paper 2003-105, Tilburg University, Center for Economic Research.
    16. Hamers, H.J.M. & Slikker, M., 1995. "The pegs-rule for probabilistic sequencing situations," Research Memorandum FEW 703, Tilburg University, School of Economics and Management.
    17. Ciftci, B.B. & Borm, P.E.M. & Hamers, H.J.M. & Slikker, M., 2008. "Batch Sequencing and Cooperation," Other publications TiSEM ed1f8fce-da76-41a6-9a9e-9, Tilburg University, School of Economics and Management.
    18. Estevez Fernandez, M.A. & Mosquera, M.A. & Borm, P.E.M. & Hamers, H.J.M., 2006. "Proportionate Flow Shop Games," Discussion Paper 2006-63, Tilburg University, Center for Economic Research.
    19. Peter Borm & Herbert Hamers & Ruud Hendrickx, 2001. "Operations research games: A survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 139-199, December.
    20. Herbert Hamers & Flip Klijn & Marco Slikker, 2013. "Price of Anarchy in Sequencing Situations and the Impossibility to Coordinate," Working Papers 709, Barcelona School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:206:y:2010:i:3:p:540-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.