IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v258y2017i2p478-490.html
   My bibliography  Save this article

Two-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizes

Author

Listed:
  • Wang, Jun-Qiang
  • Fan, Guo-Qiang
  • Zhang, Yingqian
  • Zhang, Cheng-Wu
  • Leung, Joseph Y.-T.

Abstract

We schedule the jobs from two agents on a single parallel-batching machine with equal processing time and non-identical job sizes. The objective is to minimize the makespan of the first agent subject to an upper bound on the makespan of the other agent. We show that there is no polynomial-time approximation algorithm for solving this problem with a finite worst-case ratio, unless P=NP. Then, we propose an effective algorithm LB to obtain a lower bound of the optimal solution, and two algorithms, namely, reserved-space heuristic (RSH) and dynamic-mix heuristic (DMH), to solve the two-agent scheduling problem. Finally, we evaluate the performance of the proposed algorithms with a set of computational experiments. The results show that Algorithm LB works well and tends to perform better with the increase of the number of jobs. Furthermore, our results demonstrate that RSH and DMH work well on different cases. Specifically, when the optimal makespan on the first agent exceeds the upper bound of the makespan of the other agent, RSH outperforms or equals DMH, otherwise DMH is not less favorable than RSH.

Suggested Citation

  • Wang, Jun-Qiang & Fan, Guo-Qiang & Zhang, Yingqian & Zhang, Cheng-Wu & Leung, Joseph Y.-T., 2017. "Two-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizes," European Journal of Operational Research, Elsevier, vol. 258(2), pages 478-490.
  • Handle: RePEc:eee:ejores:v:258:y:2017:i:2:p:478-490
    DOI: 10.1016/j.ejor.2016.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716308578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.10.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damodaran, Purushothaman & Kumar Manjeshwar, Praveen & Srihari, Krishnaswami, 2006. "Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 103(2), pages 882-891, October.
    2. Koh, Shie-Gheun & Koo, Pyung-Hoi & Kim, Dong-Chun & Hur, Won-Suk, 2005. "Scheduling a single batch processing machine with arbitrary job sizes and incompatible job families," International Journal of Production Economics, Elsevier, vol. 98(1), pages 81-96, October.
    3. Wang, Jun-Qiang & Leung, Joseph Y.-T., 2014. "Scheduling jobs with equal-processing-time on parallel machines with non-identical capacities to minimize makespan," International Journal of Production Economics, Elsevier, vol. 156(C), pages 325-331.
    4. Mor, Baruch & Mosheiov, Gur, 2011. "Single machine batch scheduling with two competing agents to minimize total flowtime," European Journal of Operational Research, Elsevier, vol. 215(3), pages 524-531, December.
    5. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
    6. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    7. Sung, C. S. & Choung, Y. I., 2000. "Minimizing makespan on a single burn-in oven in semiconductor manufacturing," European Journal of Operational Research, Elsevier, vol. 120(3), pages 559-574, February.
    8. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    9. Soomer, M.J. & Franx, G.J., 2008. "Scheduling aircraft landings using airlines' preferences," European Journal of Operational Research, Elsevier, vol. 190(1), pages 277-291, October.
    10. Chung-Yee Lee & Reha Uzsoy & Louis A. Martin-Vega, 1992. "Efficient Algorithms for Scheduling Semiconductor Burn-In Operations," Operations Research, INFORMS, vol. 40(4), pages 764-775, August.
    11. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    12. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    13. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Yuan & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2019. "A further study on two-agent parallel-batch scheduling with release dates and deteriorating jobs to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 273(1), pages 74-81.
    2. Zhichao Geng & Jiayu Liu, 2020. "Single machine batch scheduling with two non-disjoint agents and splitable jobs," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 774-795, October.
    3. Lin, Ran & Wang, Jun-Qiang & Oulamara, Ammar, 2023. "Online scheduling on parallel-batch machines with periodic availability constraints and job delivery," Omega, Elsevier, vol. 116(C).
    4. Baoyu Liao & Qingru Song & Jun Pei & Shanlin Yang & Panos M. Pardalos, 2020. "Parallel-machine group scheduling with inclusive processing set restrictions, outsourcing option and serial-batching under the effect of step-deterioration," Journal of Global Optimization, Springer, vol. 78(4), pages 717-742, December.
    5. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    6. Zhichao Geng & Jiayu Liu, 0. "Single machine batch scheduling with two non-disjoint agents and splitable jobs," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    7. Jun Pei & Jinling Wei & Baoyu Liao & Xinbao Liu & Panos M. Pardalos, 2020. "Two-agent scheduling on bounded parallel-batching machines with an aging effect of job-position-dependent," Annals of Operations Research, Springer, vol. 294(1), pages 191-223, November.
    8. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    9. Gur Mosheiov & Daniel Oron, 2023. "A note on batch scheduling on a two-machine flowshop with machine-dependent processing times," 4OR, Springer, vol. 21(3), pages 457-469, September.
    10. Jun-Qiang Wang & Guo-Qiang Fan & Zhixin Liu, 2020. "Mixed batch scheduling on identical machines," Journal of Scheduling, Springer, vol. 23(4), pages 487-496, August.
    11. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    12. Hao Yan & Peihai Liu & Xiwen Lu, 2023. "Vehicle scheduling problems with two agents on a line," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-18, January.
    13. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    14. Dujuan Wang & Yugang Yu & Huaxin Qiu & Yunqiang Yin & T. C. E. Cheng, 2020. "Two‐agent scheduling with linear resource‐dependent processing times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 573-591, October.
    15. Lin, Ran & Wang, Jun-Qiang & Liu, Zhixin & Xu, Jun, 2023. "Best possible algorithms for online scheduling on identical batch machines with periodic pulse interruptions," European Journal of Operational Research, Elsevier, vol. 309(1), pages 53-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    2. Damodaran, Purushothaman & Kumar Manjeshwar, Praveen & Srihari, Krishnaswami, 2006. "Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 103(2), pages 882-891, October.
    3. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    4. Xu, Rui & Chen, Huaping & Li, Xueping, 2013. "A bi-objective scheduling problem on batch machines via a Pareto-based ant colony system," International Journal of Production Economics, Elsevier, vol. 145(1), pages 371-386.
    5. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    6. Zhou, Shengchao & Liu, Ming & Chen, Huaping & Li, Xueping, 2016. "An effective discrete differential evolution algorithm for scheduling uniform parallel batch processing machines with non-identical capacities and arbitrary job sizes," International Journal of Production Economics, Elsevier, vol. 179(C), pages 1-11.
    7. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    8. Zhou, Shengchao & Xie, Jianhui & Du, Ni & Pang, Yan, 2018. "A random-keys genetic algorithm for scheduling unrelated parallel batch processing machines with different capacities and arbitrary job sizes," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 254-268.
    9. Tang, Lixin & Zhao, Xiaoli & Liu, Jiyin & Leung, Joseph Y.-T., 2017. "Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine," European Journal of Operational Research, Elsevier, vol. 263(2), pages 401-411.
    10. Gao, Yuan & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2019. "A further study on two-agent parallel-batch scheduling with release dates and deteriorating jobs to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 273(1), pages 74-81.
    11. Li, Kai & Jia, Zhao-hong & Leung, Joseph Y.-T., 2015. "Integrated production and delivery on parallel batching machines," European Journal of Operational Research, Elsevier, vol. 247(3), pages 755-763.
    12. XiaoLin Li & YuPeng Li & Yu Wang, 2017. "Minimising makespan on a batch processing machine using heuristics improved by an enumeration scheme," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 176-186, January.
    13. Jia, Zhao-hong & Leung, Joseph Y.-T., 2015. "A meta-heuristic to minimize makespan for parallel batch machines with arbitrary job sizes," European Journal of Operational Research, Elsevier, vol. 240(3), pages 649-665.
    14. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    15. Jun-Qiang Wang & Guo-Qiang Fan & Zhixin Liu, 2020. "Mixed batch scheduling on identical machines," Journal of Scheduling, Springer, vol. 23(4), pages 487-496, August.
    16. Bo Chen & Xiaotie Deng & Wenan Zang, 2004. "On-Line Scheduling a Batch Processing System to Minimize Total Weighted Job Completion Time," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 85-95, March.
    17. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    18. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
    19. Hermelin, Danny & Kubitza, Judith-Madeleine & Shabtay, Dvir & Talmon, Nimrod & Woeginger, Gerhard J., 2019. "Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems," Omega, Elsevier, vol. 83(C), pages 275-286.
    20. Ridouard, Frédéric & Richard, Pascal & Martineau, Patrick, 2008. "On-line scheduling on a batch processing machine with unbounded batch size to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1327-1342, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:258:y:2017:i:2:p:478-490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.