IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v41y2021i2d10.1007_s10878-021-00697-2.html
   My bibliography  Save this article

Two-agent preemptive Pareto-scheduling to minimize the number of tardy jobs and total late work

Author

Listed:
  • Ruyan He

    (Zhengzhou University)

  • Jinjiang Yuan

    (Zhengzhou University)

  • C. T. Ng

    (The Hong Kong Polytechnic University)

  • T. C. E. Cheng

    (The Hong Kong Polytechnic University)

Abstract

We consider the single-machine preemptive Pareto-scheduling problem with two competing agents A and B, where agent A wants to minimize the number of its jobs (the A-jobs) that is tardy, while agent B wants to minimize the total late work of its jobs (the B-jobs). We provide an $$O(nn_{A}\log n_{A}+n_B\log n_B)$$ O ( n n A log n A + n B log n B ) -time algorithm that generates all the Pareto-optimal points, where $$n_A$$ n A is the number of the A-jobs, $$n_B$$ n B is the number of the B-jobs, and $$n=n_A+n_B$$ n = n A + n B .

Suggested Citation

  • Ruyan He & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2021. "Two-agent preemptive Pareto-scheduling to minimize the number of tardy jobs and total late work," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 504-525, February.
  • Handle: RePEc:spr:jcomop:v:41:y:2021:i:2:d:10.1007_s10878-021-00697-2
    DOI: 10.1007/s10878-021-00697-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00697-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00697-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wan, Long & Yuan, Jinjiang & Wei, Lijun, 2016. "Pareto optimization scheduling with two competing agents to minimize the number of tardy jobs and the maximum cost," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 912-923.
    2. Qiulan Zhao & Jinjiang Yuan, 2020. "Bicriteria scheduling of equal length jobs on uniform parallel machines," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 637-661, April.
    3. Lee, Wen-Chiung & Wu, Chin-Chia & Hsu, Peng-Hsiang, 2010. "A single-machine learning effect scheduling problem with release times," Omega, Elsevier, vol. 38(1-2), pages 3-11, February.
    4. Oron, Daniel & Shabtay, Dvir & Steiner, George, 2015. "Single machine scheduling with two competing agents and equal job processing times," European Journal of Operational Research, Elsevier, vol. 244(1), pages 86-99.
    5. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
    6. C. T. Ng & T. C. E. Cheng & J. J. Yuan, 2006. "A note on the complexity of the problem of two-agent scheduling on a single machine," Journal of Combinatorial Optimization, Springer, vol. 12(4), pages 387-394, December.
    7. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    8. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    9. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    10. Cheng, T.C.E. & Ng, C.T. & Yuan, J.J., 2008. "Multi-agent scheduling on a single machine with max-form criteria," European Journal of Operational Research, Elsevier, vol. 188(2), pages 603-609, July.
    11. A. M. A. Hariri & C. N. Potts & L. N. Van Wassenhove, 1995. "Single Machine Scheduling to Minimize Total Weighted Late Work," INFORMS Journal on Computing, INFORMS, vol. 7(2), pages 232-242, May.
    12. J. Michael Moore, 1968. "An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs," Management Science, INFORMS, vol. 15(1), pages 102-109, September.
    13. Yuan Zhang & Jinjiang Yuan, 2019. "A note on a two-agent scheduling problem related to the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 989-999, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    2. Shuen Guo & Hao Lang & Hanxiang Zhang, 2023. "Scheduling of Jobs with Multiple Weights on a Single Machine for Minimizing the Total Weighted Number of Tardy Jobs," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    3. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    4. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    5. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    2. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    3. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    4. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    5. Zhang Xingong & Wang Yong, 2017. "Two-agent scheduling problems on a single-machine to minimize the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 945-955, April.
    6. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    7. Yuan Zhang & Jinjiang Yuan & Chi To Ng & Tai Chiu E. Cheng, 2021. "Pareto‐optimization of three‐agent scheduling to minimize the total weighted completion time, weighted number of tardy jobs, and total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 378-393, April.
    8. Yuan Zhang & Jinjiang Yuan, 2019. "A note on a two-agent scheduling problem related to the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 989-999, April.
    9. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    10. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
    11. Yuan Zhang & Zhichao Geng & Jinjiang Yuan, 2020. "Two-Agent Pareto-Scheduling of Minimizing Total Weighted Completion Time and Total Weighted Late Work," Mathematics, MDPI, vol. 8(11), pages 1-17, November.
    12. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    13. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    14. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
    15. Wenchang Luo & Lin Chen & Guochuan Zhang, 2012. "Approximation schemes for two-machine flow shop scheduling with two agents," Journal of Combinatorial Optimization, Springer, vol. 24(3), pages 229-239, October.
    16. Wan, Long & Mei, Jiajie & Du, Jiangze, 2021. "Two-agent scheduling of unit processing time jobs to minimize total weighted completion time and total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 290(1), pages 26-35.
    17. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    18. Yaodong Ni & Zhaojun Zhao, 2017. "Two-agent scheduling problem under fuzzy environment," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 739-748, March.
    19. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    20. Cheng He & Joseph Y.-T. Leung, 2017. "Two-agent scheduling of time-dependent jobs," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 362-377, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:41:y:2021:i:2:d:10.1007_s10878-021-00697-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.