IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v292y2021i2p397-422.html
   My bibliography  Save this article

Performance indicators in multiobjective optimization

Author

Listed:
  • Audet, Charles
  • Bigeon, Jean
  • Cartier, Dominique
  • Le Digabel, Sébastien
  • Salomon, Ludovic

Abstract

In recent years, the development of new algorithms for multiobjective optimization has considerably grown. A large number of performance indicators has been introduced to measure the quality of Pareto front approximations produced by these algorithms. In this work, we propose a review of a total of 63 performance indicators partitioned into four groups according to their properties: cardinality, convergence, distribution and spread. Applications of these indicators are presented as well.

Suggested Citation

  • Audet, Charles & Bigeon, Jean & Cartier, Dominique & Le Digabel, Sébastien & Salomon, Ludovic, 2021. "Performance indicators in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 292(2), pages 397-422.
  • Handle: RePEc:eee:ejores:v:292:y:2021:i:2:p:397-422
    DOI: 10.1016/j.ejor.2020.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720309620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Emmerich & Kaifeng Yang & André Deutz & Hao Wang & Carlos M. Fonseca, 2016. "A Multicriteria Generalization of Bayesian Global Optimization," Springer Optimization and Its Applications, in: Panos M. Pardalos & Anatoly Zhigljavsky & Julius Žilinskas (ed.), Advances in Stochastic and Deterministic Global Optimization, pages 229-242, Springer.
    2. Günter Rudolph & Oliver Schütze & Christian Grimme & Christian Domínguez-Medina & Heike Trautmann, 2016. "Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results," Computational Optimization and Applications, Springer, vol. 64(2), pages 589-618, June.
    3. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    4. Deb, Kalyanmoy & Tiwari, Santosh, 2008. "Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1062-1087, March.
    5. Audet, Charles & Savard, Gilles & Zghal, Walid, 2010. "A mesh adaptive direct search algorithm for multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 545-556, August.
    6. Dächert, Kerstin & Klamroth, Kathrin & Lacour, Renaud & Vanderpooten, Daniel, 2017. "Efficient computation of the search region in multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 841-855.
    7. Luís M. S. Russo & Alexandre P. Francisco, 2016. "Extending quick hypervolume," Journal of Heuristics, Springer, vol. 22(3), pages 245-271, June.
    8. Eric Bradford & Artur M. Schweidtmann & Alexei Lapkin, 2018. "Correction to: Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm," Journal of Global Optimization, Springer, vol. 71(2), pages 439-440, June.
    9. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    10. Guerreiro, Andreia P. & Fonseca, Carlos M., 2020. "An analysis of the Hypervolume Sharpe-Ratio Indicator," European Journal of Operational Research, Elsevier, vol. 283(2), pages 614-629.
    11. Paul Feliot & Julien Bect & Emmanuel Vazquez, 2017. "A Bayesian approach to constrained single- and multi-objective optimization," Journal of Global Optimization, Springer, vol. 67(1), pages 97-133, January.
    12. Margaret M. Wiecek & Matthias Ehrgott & Alexander Engau, 2016. "Continuous Multiobjective Programming," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 739-815, Springer.
    13. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    14. Eric Bradford & Artur M. Schweidtmann & Alexei Lapkin, 2018. "Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm," Journal of Global Optimization, Springer, vol. 71(2), pages 407-438, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duro, João A. & Ozturk, Umud Esat & Oara, Daniel C. & Salomon, Shaul & Lygoe, Robert J. & Burke, Richard & Purshouse, Robin C., 2023. "Methods for constrained optimization of expensive mixed-integer multi-objective problems, with application to an internal combustion engine design problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 421-446.
    2. Raka Jovanovic & Antonio P. Sanfilippo & Stefan Voß, 2022. "Fixed set search applied to the multi-objective minimum weighted vertex cover problem," Journal of Heuristics, Springer, vol. 28(4), pages 481-508, August.
    3. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    4. Gaggero, Mauro & Paolucci, Massimo & Ronco, Roberto, 2023. "Exact and heuristic solution approaches for energy-efficient identical parallel machine scheduling with time-of-use costs," European Journal of Operational Research, Elsevier, vol. 311(3), pages 845-866.
    5. Francisco Jonatas Siqueira Coelho & Allan Rivalles Souza Feitosa & André Luís Michels Alcântara & Kaifeng Li & Ronaldo Ferreira Lima & Victor Rios Silva & Abel Guilhermino da Silva-Filho, 2023. "HyMOTree: Automatic Hyperparameters Tuning for Non-Technical Loss Detection Based on Multi-Objective and Tree-Based Algorithms," Energies, MDPI, vol. 16(13), pages 1-22, June.
    6. Ducardo L. Molina & Juan Ricardo Vidal Medina & Alexis Sagastume Gutiérrez & Juan J. Cabello Eras & Jesús A. Lopez & Simón Hincapie & Enrique C. Quispe, 2023. "Multiobjective Optimization of the Energy Efficiency and the Steam Flow in a Bagasse Boiler," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    7. Charles Audet & Frédéric Messine & Jordan Ninin, 2022. "Numerical certification of Pareto optimality for biobjective nonlinear problems," Journal of Global Optimization, Springer, vol. 83(4), pages 891-908, August.
    8. Abdulaziz Almalaq & Tawfik Guesmi & Saleh Albadran, 2023. "A Hybrid Chaotic-Based Multiobjective Differential Evolution Technique for Economic Emission Dispatch Problem," Energies, MDPI, vol. 16(12), pages 1-34, June.
    9. Gonzalo Sánchez-Contreras & Adrián Fernández-Rodríguez & Antonio Fernández-Cardador & Asunción P. Cucala, 2023. "A Two-Level Fuzzy Multi-Objective Design of ATO Driving Commands for Energy-Efficient Operation of Metropolitan Railway Lines," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    10. Gholamreza Shojatalab & Seyed Hadi Nasseri & Iraj Mahdavi, 2023. "New multi-objective optimization model for tourism systems with fuzzy data and new approach developed epsilon constraint method," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1360-1385, September.
    11. de Freitas, Juliana Campos & Cantane, Daniela Renata & Rocha, Humberto & Dias, Joana, 2024. "A multiobjective beam angle optimization framework for intensity-modulated radiation therapy," European Journal of Operational Research, Elsevier, vol. 318(1), pages 286-296.
    12. Maleknia, Morteza & Soleimani-damaneh, Majid, 2024. "An effective subgradient algorithm via Mifflin’s line search for nonsmooth nonconvex multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 319(2), pages 505-516.
    13. Jean Bigeon & Sébastien Le Digabel & Ludovic Salomon, 2021. "DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 301-338, June.
    14. Zandieh, Fatemeh & Ghannadpour, Seyed Farid, 2023. "A comprehensive risk assessment view on interval type-2 fuzzy controller for a time-dependent HazMat routing problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 685-707.
    15. Jeewaka Perera & Shih-Hsi Liu & Marjan Mernik & Matej Črepinšek & Miha Ravber, 2023. "A Graph Pointer Network-Based Multi-Objective Deep Reinforcement Learning Algorithm for Solving the Traveling Salesman Problem," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    16. Dalila B. M. M. Fontes & S. Mahdi Homayouni, 2023. "A bi-objective multi-population biased random key genetic algorithm for joint scheduling quay cranes and speed adjustable vehicles in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 241-268, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    2. Guerreiro, Andreia P. & Fonseca, Carlos M., 2020. "An analysis of the Hypervolume Sharpe-Ratio Indicator," European Journal of Operational Research, Elsevier, vol. 283(2), pages 614-629.
    3. C. P. Brás & A. L. Custódio, 2020. "On the use of polynomial models in multiobjective directional direct search," Computational Optimization and Applications, Springer, vol. 77(3), pages 897-918, December.
    4. Wenyu Wang & Christine A. Shoemaker, 2023. "Reference Vector Assisted Candidate Search with Aggregated Surrogate for Computationally Expensive Many Objective Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 318-334, March.
    5. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    6. Kaifeng Yang & Michael Emmerich & André Deutz & Thomas Bäck, 2019. "Efficient computation of expected hypervolume improvement using box decomposition algorithms," Journal of Global Optimization, Springer, vol. 75(1), pages 3-34, September.
    7. Hwang, Junhyeok & Kim, Jeongnam & Lee, Hee Won & Na, Jonggeol & Ahn, Byoung Sung & Lee, Sang Deuk & Kim, Hoon Sik & Lee, Hyunjoo & Lee, Ung, 2019. "An experimental based optimization of a novel water lean amine solvent for post combustion CO2 capture process," Applied Energy, Elsevier, vol. 248(C), pages 174-184.
    8. Baklouti, Ahmad & Dammak, Khalil & El Hami, Abdelkhalak, 2022. "Optimum reliable design of rolling element bearings using multi-objective optimization based on C-NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    9. Menghua Deng & Zhiqi Li & Feifei Tao, 2022. "Rainstorm Disaster Risk Assessment and Influence Factors Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    10. Jamie A. Manson & Thomas W. Chamberlain & Richard A. Bourne, 2021. "MVMOO: Mixed variable multi-objective optimisation," Journal of Global Optimization, Springer, vol. 80(4), pages 865-886, August.
    11. Menghua Deng & Junfei Chen & Feifei Tao & Jiulong Zhu & Min Wang, 2022. "On the Coupling and Coordination Development between Environment and Economy: A Case Study in the Yangtze River Delta of China," IJERPH, MDPI, vol. 19(1), pages 1-20, January.
    12. David Stenger & Robert Ritschel & Felix Krabbes & Rick Voßwinkel & Hendrik Richter, 2023. "What Is the Best Way to Optimally Parameterize the MPC Cost Function for Vehicle Guidance?," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    13. Thebelt, Alexander & Tsay, Calvin & Lee, Robert M. & Sudermann-Merx, Nathan & Walz, David & Tranter, Tom & Misener, Ruth, 2022. "Multi-objective constrained optimization for energy applications via tree ensembles," Applied Energy, Elsevier, vol. 306(PB).
    14. He Liu & Xueming Li, 2022. "Understanding the Driving Factors for Urban Human Settlement Vitality at Street Level: A Case Study of Dalian, China," Land, MDPI, vol. 11(5), pages 1-20, April.
    15. Wenyu Wang & Taimoor Akhtar & Christine A. Shoemaker, 2022. "Integrating $$\varepsilon $$ ε -dominance and RBF surrogate optimization for solving computationally expensive many-objective optimization problems," Journal of Global Optimization, Springer, vol. 82(4), pages 965-992, April.
    16. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    17. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    18. Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2021. "Systemic risk-efficient asset allocations: Minimization of systemic risk as a network optimization problem," Journal of Financial Stability, Elsevier, vol. 52(C).
    19. Peter A. Abken & Milind M. Shrikhande, 1997. "The role of currency derivatives in internationally diversified portfolios," Economic Review, Federal Reserve Bank of Atlanta, vol. 82(Q 3), pages 34-59.
    20. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2018. "A Big data analytical framework for portfolio optimization," Papers 1811.07188, arXiv.org, revised Nov 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:292:y:2021:i:2:p:397-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.