IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v283y2020i2p614-629.html
   My bibliography  Save this article

An analysis of the Hypervolume Sharpe-Ratio Indicator

Author

Listed:
  • Guerreiro, Andreia P.
  • Fonseca, Carlos M.

Abstract

Set-quality indicators have been used in Evolutionary Multiobjective Optimization Algorithms (EMOAs) to guide the search process. Recently, a new class of set-quality indicators combining the selection of solutions with fitness assignment has been proposed. This class is based on a formulation of fitness assignment as a Portfolio Selection Problem, where solutions are seen as assets whose returns are random variables, and fitness represents the investment in such assets/solutions. The Hypervolume Sharpe Ratio (HSR) Indicator is an instance of this class of indicators which has led to promising results as part of an EMOA denominated the Portfolio Optimization Selection Evolutionary Algorithm (POSEA). In this paper, the class of Sharpe-Ratio Indicators is formalized, and the HSR indicator is studied in regard to monotonicity, sensitivity to objective scaling, and dependence on its parameters. In addition, optimal μ-distributions on two-objective linear fronts, and the corresponding fitness assignments, are characterized. Such optimal μ-distributions turn out to be identical to those of the Hypervolume Indicator on the same fronts. Experimental results complement the analysis.

Suggested Citation

  • Guerreiro, Andreia P. & Fonseca, Carlos M., 2020. "An analysis of the Hypervolume Sharpe-Ratio Indicator," European Journal of Operational Research, Elsevier, vol. 283(2), pages 614-629.
  • Handle: RePEc:eee:ejores:v:283:y:2020:i:2:p:614-629
    DOI: 10.1016/j.ejor.2019.11.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719309348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.11.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Miłosz Kadziński & Michał K. Tomczyk, 2017. "Interactive Evolutionary Multiple Objective Optimization for Group Decision Incorporating Value-based Preference Disaggregation Methods," Group Decision and Negotiation, Springer, vol. 26(4), pages 693-728, July.
    3. Günter Rudolph & Oliver Schütze & Christian Grimme & Christian Domínguez-Medina & Heike Trautmann, 2016. "Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results," Computational Optimization and Applications, Springer, vol. 64(2), pages 589-618, June.
    4. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    5. Branke, Juergen & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman & Zielniewicz, Piotr, 2016. "Using Choquet integral as preference model in interactive evolutionary multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 250(3), pages 884-901.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    2. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    3. Audet, Charles & Bigeon, Jean & Cartier, Dominique & Le Digabel, Sébastien & Salomon, Ludovic, 2021. "Performance indicators in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 292(2), pages 397-422.
    4. Lu, Shuai & Li, Shouwei & Chen, Ning, 2022. "Robust return efficiency and herding behavior of fund managers," Finance Research Letters, Elsevier, vol. 46(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbati, Maria & Greco, Salvatore & Kadziński, Miłosz & Słowiński, Roman, 2018. "Optimization of multiple satisfaction levels in portfolio decision analysis," Omega, Elsevier, vol. 78(C), pages 192-204.
    2. Audet, Charles & Bigeon, Jean & Cartier, Dominique & Le Digabel, Sébastien & Salomon, Ludovic, 2021. "Performance indicators in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 292(2), pages 397-422.
    3. Salvatore Corrente & Salvatore Greco & Benedetto Matarazzo & Roman Słowiński, 2016. "Robust ordinal regression for decision under risk and uncertainty," Journal of Business Economics, Springer, vol. 86(1), pages 55-83, January.
    4. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    5. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    6. Peter A. Abken & Milind M. Shrikhande, 1997. "The role of currency derivatives in internationally diversified portfolios," Economic Review, Federal Reserve Bank of Atlanta, vol. 82(Q 3), pages 34-59.
    7. Leonard J. Mirman & Egas M. Salgueiro & Marc Santugini, 2013. "Integrating Real and Financial Decisions of the Firm," Cahiers de recherche 1333, CIRPEE.
    8. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    9. Raffestin, Louis, 2014. "Diversification and systemic risk," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 85-106.
    10. Gruber, Lutz F. & West, Mike, 2017. "Bayesian online variable selection and scalable multivariate volatility forecasting in simultaneous graphical dynamic linear models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 3-22.
    11. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    12. Hany Shawky & Ronald Forbes & Alan Frankle, 1983. "Liquidity Services and Capital Market Equilibrium: The Case for Money Market Mutual Funds," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 6(2), pages 141-152, June.
    13. Colin Atkinson & Emmeline Storey, 2010. "Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 323-357.
    14. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    15. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    16. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    17. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
    18. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    19. Mounira Chniguir & Mohamed Karim Kefi & Jamel Eddine Henchiri, 2017. "The Determinants of Home Bias in Stock Portfolio: An Emerging and Developed Markets Study," International Journal of Economics and Financial Issues, Econjournals, vol. 7(6), pages 182-191.
    20. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:283:y:2020:i:2:p:614-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.